用户名: 密码: 验证码:
纳米氧化锌致大型溞的毒性效应特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the toxicity effects of nanometer zinc oxide on Daphnia magna
  • 作者:刘倩 ; 杜青平 ; 刘涛 ; 石瑛 ; 李嘉懿 ; 彭皇强 ; 林俊熙 ; 秦春怡
  • 英文作者:LIU Qian;DU Qingping;LIU Tao;SHI Ying;LI Jiayi;PENG Huangqiang;LIN Junxi;QIN Chunyi;School of Environmental Science and Engineering, Guangdong University of Technology;Biology Department, Taiyuan Normal University;
  • 关键词:纳米氧化锌 ; 大型溞 ; 毒性效应 ; 蜕皮
  • 英文关键词:nano-zinc oxide;;Daphnia magna;;toxicity effects;;molting
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:广东工业大学环境科学与工程学院;太原师范学院生物系;
  • 出版日期:2018-12-24 14:53
  • 出版单位:环境科学学报
  • 年:2019
  • 期:v.39
  • 基金:广东省科技计划项目(No.2015A020215031);; 山西省科技基础条件平台建设项目(No.2015091004-0102);; 2013年高校“131”领军人才工程优秀中青年拔尖创新人才项目
  • 语种:中文;
  • 页:HJXX201904036
  • 页数:8
  • CN:04
  • ISSN:11-1843/X
  • 分类号:322-329
摘要
采用半静态暴露的方法,以大型溞的死亡率、显微结构损伤、蜕皮率、游泳行为等作为毒性测试终点,研究不同浓度纳米氧化锌(ZnONP)对大型溞(Daphnia magna)的毒性效应.结果显示,ZnONP水溶液稳定性差,在溶液中沉降率随着浓度增大而增大,Zeta电位降低.ZnONP对大型溞处理48 h的半数致死浓度LC_(50)为3 mg·L~(-1),ZnONP致大型溞的死亡率呈现一定的时间-效应关系;ZnONP暴露会使大型溞肠道和体表损伤.经显微结构观察发现,ZnONP可粘附在大型溞体表面,并引起大型溞游泳的垂直高度升高,大型溞蜕皮时间延迟,成功蜕皮率降低.结果表明ZnONP对大型溞个体和行为产生一定的毒性效应,其毒性效应的机理与其颗粒物对大型溞肠道和体表粘附有直接的关系,研究结果对合理地评价纳米材料对水生生物的影响有一定的理论参考价值.
        The potential toxicity effects of nanometer zinc oxide(ZnONP) concentration on Daphnia magna were investigated with semi-static exposure method. The toxicity assessment was determined by the main endpoints which were indicated by the following, factors like mortality rate, surface structure damage, molting successful rate, swimming behavior and etc. The results showed that the stability of ZnONP in solution was poor. The settling rate of ZnONP particles increased with the increasing concentrations of ZnONP in solution while the zeta potential decreased. LC_(50) of Daphnia magna being exposed to ZnONP solution for 48 h was 3 mg·L~(-1). The mortality of Daphnia magna increased with the ZnONP exposure time, which presented a relationship between time and the effect. Under the microscopy, it was found that the damage of intestinal tract and body surface was caused by the exposure of Daphnia magna to ZnONP solution. ZnONP particles were adhered on the surface of Daphnia magna body. In addition, the vertical height of the swimming of the magna increased, the molting time of Daphnia magna was delayed and the successful molting rates were declined. The results revealed that ZnONP had potential toxicity effects on Daphnia magna and their behaviors. The toxicity mechanism of ZnONP on Daphnia magna was directly related to the damage of intestines and the surface adhesion of Daphnia magna. The results have a certain theoretical reference value for the reasonable evaluation of nanomaterials on aquatic organisms.
引文
Adam N, Leroux F, Knapen D, et al. 2015. The uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna under chronic exposure scenarios[J]. Water Research, 68(6): 249-261
    Adams L K, Lyon D Y, Alvarez P J. 2006. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions[J]. Water Research, 40(19): 3527-3532
    Adema D M M. 1978. Daphnia magna as a test animal in acute and chronic toxicity tests[J]. Hydrobiologia, 59(2): 125-134
    Bownik A. 2017. Daphnia swimming behaviour as a biomarker in toxicity assessment: A review[J]. Science of the Total Environment, 601: 194-205
    Brausch K A, Anderson T A, Smith P N, et al. 2015. The effect of fullerenes and functionalized fullerenes on Daphnia magna phototaxis and swimming behavior[J]. Environmental Toxicology & Chemistry, 30(4): 878-884
    Chen Y, Wu F, Li W, et al. 2017. Comparison on the effects of water-borne and dietary-borne accumulated ZnO nanoparticles on Daphnia magna[J]. Chemosphere, 189: 94-103
    Coors A, Hammerswirtz M, Ratte H T. 2004. Adaptation to environmental stress in Daphnia magna simultaneously exposed to a xenobiotic[J]. Chemosphere, 56(4): 395-404
    Dabrunz A, Duester L, Prasse C, et al. 2011. Biological surface coating and molting inhibition as mechanisms of TiO2 nanoparticle toxicity in Daphnia magna[J]. Plos One, 6(5): e20112
    De A I, Barone F, Zijno A, et al. 2013. Comparative study of ZnO and TiO2 nanoparticles: physicochemical characterisation and toxicological effects on human colon carcinoma cells[J]. Nanotoxicology, 7(8): 1361-1372
    Fan W, Cui M, Liu H, et al. 2011. Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna[J]. Environmental Pollution, 159(3): 729-734
    范文宏, 刘通, 史志伟, 等. 2016. 立方体和八面体微/纳米氧化亚铜对大型水蚤(Daphnia magna)的氧化胁迫和生理损伤[J]. 生态毒理学报, 11(5): 40-48
    Harris K D, Bartlett N J, Lloyd V K. 2014. Daphnia as an emerging epigenetic model organism[J]. Genetics Research International, 2012(2): 147892
    Jacobasch C, V?lker C, Giebner S, et al. 2014. Long-term effects of nanoscaled titanium dioxide on the cladoceran Daphnia magna over six generations[J]. Environmental Pollution, 186: 180-186
    Kaya H, Ayd?n F, Gürkan M, et al. 2015. Effects of zinc oxide nanoparticles on bioaccumulation and oxidative stress in different organs of tilapia (Oreochromis niloticus)[J]. Environmental Toxicology & Pharmacology, 40(3): 936-947
    Kaya H, Ayd?n F, Gürkan M, et al. 2016. A comparative toxicity study between small and large size zinc oxide nanoparticles in tilapia (Oreochromis niloticus): Organ pathologies, osmoregulatory responses and immunological parameters[J]. Chemosphere, 144: 571-582
    Lampert W, Mccauley E, Manly B F. 2003. Trade-offs in the vertical distribution of zooplankton: ideal free distribution with costs?[J]. Proceedings Biological Sciences, 270(1516): 765-773
    Li L X, Xu Z L, Wu J Y, et al. 2010. Bioaccumulation of heavy metals in the earthworm Eisenia fetida in relation to bioavailable metal concentrations in pig manure[J]. Bioresource Technology, 101(10): 3430-3436
    刘建新, 杜青平, 陈展明, 等. 2016. 纳米氧化锌对羊角月牙藻毒性效应及其在藻细胞内外的分布[J]. 生态毒理学报, 11(5): 103-110
    Liu Y, Wang L, Pan B, et al. 2017. Toxic effects of diclofenac on life history parameters and the expression of detoxification-related genes in Daphnia magna[J]. Aquatic Toxicology, 183: 104-113
    Lovern S B, Strickler J R, Klaper R. 2007. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx)[J]. Environmental Science & Technology, 41(12): 4465-4470
    Min-Li Q U, Jiang W C. 2004. Investigation of the antibacterial mechanism of nanometer zinc oxide[J]. Textile Auxiliaries, 6:45-46
    Nasser F, Davis A, Valsamijones E, et al. 2016a. Shape and charge of gold nanomaterials influence survivorship, oxidative stress and moulting of Daphnia magna[J]. Nanomaterials, 6(12): 222
    Stanley J K, Laird J G, Kennedy A J, et al. 2016. Sublethal effects of multiwalled carbon nanotube exposure in the invertebrate Daphnia magna[J]. Environmental Toxicology & Chemistry, 35(1): 200-204
    Xiao Y, Vijver M G, Chen G, et al. 2015. Toxicity and accumulation of Cu and ZnO nanoparticles in Daphnia magna[J]. Environmental Science & Technology, 49(7): 4657-4664
    Zhu X, Tian S, Cai Z. 2012. Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages[J]. Plos One, 7(9): e46286
    Zhu X, Zhu L, Duan Z, et al. 2008. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage[J]. Journal of Environmental Science & Health Part A, 43(3): 278-284
    朱小山, 朱琳, 田胜艳, 等. 2008. 三种金属氧化物纳米颗粒的水生态毒性[J]. 生态学报, 28(8): 3507-3516

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700