固体燃料空气涡轮火箭发动机工作模式
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Operating mode of solid propellant air turbocharged rocket
  • 作者:刘诗昌 ; 何国强 ; 刘洋 ; 李江 ; 杨飒 ; 王伟
  • 英文作者:LIU Shi-chang,HE Guo-qiang,LIU Yang,LI Jiang,YANG Sa,WANG Wei(Science and Technology on Combustion,Internal Flow and Thermal-structure Laboratory, Northwestern Polytechnical University,Xi'an 710129,China)
  • 关键词:固体燃料空气涡轮火箭发动机(SP-ATR) ; 工作模式 ; 比冲 ; 比推力
  • 英文关键词:solid propellant air turbocharged rocket(SP-ATR);operating mode;specific impulse;specific thrust
  • 中文刊名:GTHJ
  • 英文刊名:Journal of Solid Rocket Technology
  • 机构:西北工业大学燃烧热结构与内流场重点实验室;
  • 出版日期:2013-02-15
  • 出版单位:固体火箭技术
  • 年:2013
  • 期:v.36;No.154
  • 语种:中文;
  • 页:GTHJ201301005
  • 页数:5
  • CN:01
  • ISSN:61-1176/V
  • 分类号:21-25
摘要
根据SP-ATR目前存在的燃气难以兼顾清洁和富燃的问题,文章提出将原本由1股燃气单独承担驱动涡轮和补燃功能的工作模式分解为由2股燃气分别担负驱涡和补燃功能的工作模式。通过对比分析该工作模式的SP-ATR和固冲发动机、涡喷发动机工作特点,提出了适合该形式SP-ATR的性能计算模型,得到其飞行包线,发现该SP-ATR工作包线宽广,可完全包含涡喷和固冲发动机的工作包线。在此基础上,计算得到了SP-ATR在不同空域和速度条件下的飞行性能及变化规律:(1)随飞行高度和速度的增加,其比冲、比推力增加,但性能随外弹道变化幅度较小,整个工作范围性能稳定;(2)在近地面和低空SP-ATR均可实现低空亚音速盘旋和5 km高度以上的超音速飞行,且在比冲高于6 700 N.s/kg,同时保持比推力大于1 100 N.s/kg;(3)高空SP-ATR工作高度速度范围宽,比冲性能与冲压发动机相当,比推力为冲压发动机的2倍,相同飞行速度条件下飞行高度增加比冲增加、比推力增加,具有在更高高度巡航潜力,高空性能优势明显。
        Based on the current problems on SP-ATR,a new SP-ATR was proposed,in which afterburner rich fuel gas was added separately.A new model used for the new SP-ATR was presented through comparing the SP-ATR with the Ramjet and the Aerojet.By the model,the flight envelope of the SP-ATR was calculated,and the Ramjet and Aerojet's envelope was completely contained by the SP-ATR's,which means taht the SP-ATR has a wide working range.Then SP-ATR's performance were calculated in different heights and velocities.The results are as follows:firstly,with the increase of height and velocity,the SP-ATR's specific impulse and specific thrust increase,but its performance changs slightly with the changes in external ballistics,which means that the SP-ATR performance is stable.Secondly,in the height range of near-ground and low-level,SP-ATR could fulfill the request that its velocity could change from subsonic to supersonic and keep its specific impulse no less than 6 700 N·s/kg and specific thrust no less than 1 100 N·s/kg.Thirdly,in the high altitude,SP-ATR's working range is wide.Compared with the Ramjet,its specific impulse is the same as the Ramjet's and its specific thrust is as twice as the Ramjet's.Additionally,under the same flight velocity,its thrust increases with the increase of height,which means that SP-ATR has the ability to work in the higher altitude.
引文
[1]Thomas M E,Bossard J A,Ostrander M J.Addressing emer-ging tactical missile propulsion challenges with the solid pro-pellant air turbo rocket[R].AIAA 2000-3309.
    [2]John L Bergmans,Robert I Myers.Throttle valves for air tur-bo-rocket engine control[R].AIAA 97-3188.
    [3]Kirk Christensen.Air turbo rocket/vehicle performance com-parison[J].Journal of Propulsion and Power,1999,15(5).
    [4]Sullerey R K,et al.Performance comparison of air turborocket engine with different fuel systems[R].AIAA 2003-3648.
    [5]屠秋野,陈玉春,苏三买,等.固体推进剂吸气式涡轮火箭发动机的建模及特征研究[J].固体火箭技术,2006,29(5):317-319.
    [6]陈湘,陈玉春,屠秋野,等.固体推进剂空气涡轮火箭发动机的非设计点性能研究[J].固体火箭技术,2008,31(5):445-448.
    [7]潘宏亮,林彬彬,刘洋.加力式空气涡轮火箭发动机特性研究[J].固体火箭技术,2010,33(6):650-655.
    [8]莫然.涡轮增压固体冲压发动机建模与性能分析[D].西北工业大学,2011.
    [9]鲍福廷,黄熙君,张振鹏.固体冲压组合发动机[M].北京:中国宇航出版社,2006.
    [10]李成功,傅恒志,于翘,等.航空航天材料[M].北京:国防工业出版社,2002.
    [11]史亚红,戴耀松.涡轮冲压发动机技术分析[M].北京:航天工业总公司三十一所.
    [12]徐东来,陈凤明,蔡飞超.固体火箭冲压发动机设计技术问题分析[J].固体火箭技术.2010,33(2):142-147.
    [13]刘新建.导弹总体分析与设计[M].长沙:国防科技大学出版社,2006.
    [14]Ronald S Fry.A century of ramjet propulsion technology evo-lution[J].Journal of Propulsion and Power,2004,20(1).
    [15]中国航天工业总公司《世界导弹与航天发动机大全》编辑委员会.世界导弹与航天发动机大全[M].北京:军事科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700