1972-2016年东天山哈尔里克山地区冰川物质平衡研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on glacier mass balance in the Karlik Range, East Tianshan Mountains, 1972-2016
  • 作者:杨晓辉 ; 赵井东 ; 韩惠
  • 英文作者:YANG Xiaohui;ZHAO Jingdong;HAN Hui;State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences;University of Chinese Academy of Sciences;Faculty of Geomatics,Lanzhou Jiaotong University;
  • 关键词:东天山 ; 哈尔里克山 ; 冰川物质平衡 ; DEM
  • 英文关键词:East Tianshan Mountains;;Karlik Range;;glacier mass balance;;digital elevation model(DEM)
  • 中文刊名:BCDT
  • 英文刊名:Journal of Glaciology and Geocryology
  • 机构:中国科学院西北生态环境资源研究院冰冻圈科学国家重点实验室;中国科学院大学;兰州交通大学测绘与地理信息学院;
  • 出版日期:2019-02-25
  • 出版单位:冰川冻土
  • 年:2019
  • 期:v.41
  • 基金:科技部科技基础性工作专项项目(2013FY111400);; 国家自然科学基金项目(41771018; 41371028);; 冰冻圈科学国家重点实验室开放课题(SKLCS-OP-2018-02)资助
  • 语种:中文;
  • 页:BCDT201901001
  • 页数:11
  • CN:01
  • ISSN:62-1072/P
  • 分类号:7-17
摘要
新疆哈密地区是世界上极端干旱的地区之一,依托高峻的哈尔里克山发育的现代冰川成为维系本区绿洲生存与发展的固体水库。对哈尔里克山地区冰川的监测与研究可获得本区冰川对全球气候变化的响应,也为哈密地区的水资源评估、生态建设与绿洲经济的可持续发展提供基础数据与理论支持。基于地形图、 SRTM DEM和资源三号立体像对等数据,采用大地测量法对哈尔里克山地区自地形图成图以来44年间冰川物质平衡进行了研究。结果表明:1972-2016年间冰川平均表面高程下降了(9.15±0.98) m,冰川物质平衡为(-0.18±0.02) m·a~(-1) w.e.,冰量损失显著。其中, 1972-1999年间,冰川物质平衡为(-0.04±0.01) m·a~(-1) w.e.,冰量损失较缓慢; 1999-2016年间,冰川物质平衡增至(-0.36±0.05) m·a~(-1) w.e.,冰量损失加剧。此外,南北坡的冰川物质平衡空间差异性明显。1972-1999年间,北坡冰川物质平衡为(-0.05±0.01) m·a~(-1) w.e.,南坡冰川物质平衡为(-0.02±0.01) m·a~(-1) w.e.,北坡冰川物质损失略大于南坡; 1999-2016年间,北坡冰川物质平衡为(-0.27±0.04) m·a~(-1) w.e.,南坡冰川物质平衡为(-0.45±0.05) m·a~(-1) w.e.,南坡冰川损失量远大于北坡。结合哈密与伊吾气象观测资料分析可知:冰川的物质平衡与气温变化呈现出很强的相关性,研究区的降水量自20世纪50年代以来呈增加趋势,但温度变化对冰川物质平衡的影响大于略微增加的降水的影响。1999年后,南坡冬夏季气温的增长幅度均超过北坡,这是南坡冰量损失加剧的主因。
        Hami Prefecture of the Xinjiang Uigur Autonomous Region is one of the most arid areas in the world. The glaciers developing in the Karlik Range of Hami Prefecture are an available and reliable "solid reservoir" that sustain the existence and development of the oasis nearby. The response of glaciers to global climate change could be obtained by observing and studying them. The relative information could also be used to evaluate water resources and reconstruct eco-environment, and finally to maintain the sustainable development of the oasis economy in Hami Prefecture. In this study, geodetic measurement was used to study the glacier mass balance during 1972-2016 in the Karlik Range by using the data from topographic maps, SRTM and Resource-3 satellite images. It was revealed that a continuous shrinkage of glacier has occurred during this period with a velocity about(9.15±0.98) m ice per year, i.e.,(-0.18±0.02) m·a~(-1) w.e.. However, the glacier mass loss was about(-0.04±0.01) m·a~(-1) w.e. during 1972-1999, i.e.,(-0.36±0.05) m·a~(-1) w.e. during 1999-2016. In addition, there were different glacier mass losses between northern and southern slopes. The glacier mass balance was about(-0.05±0.01) m·a~(-1) w.e. on the northern slopes and(-0.02±0.01) m·a~(-1) w.e. on the southern slopes during 1972-1999, indicating that the glacier loss on the northern slopes was slight more than that on the southern slopes during this period. However, the glacier mass balance was about(-0.27±0.04) m·a~(-1) w.e. on the northern slopes and(-0.45±0.05) m·a~(-1) w.e. on the southern slopes during 1999-2016, demonstrating that the glacier mass loss had accelerated on both slopes and the glacier mass loss on the southern slopes was much higher than that on the northern slopes. In order to analyze these differences, the meteorological data of Hami and Yiwu Meteorological Stations have been analyzed. The results demonstrate that the glacier mass balance was strongly correlated with temperature; precipitation has slightly increased form 1950 s, whereas, increasing temperature has exerted greater impact on glacier mass balance. After 1999, the temperature in winter and summer had increased more on southern slopes than that on the northern slopes, therefore, it is reasonable to infer that this is main cause for significant glacier mass loss on the southern slopes since 1999.
引文
[1] Qin Dahe, Ding Yongjian, Xiao Cunde, et al. Cryospheric Science: research framework and disciplinary system[J]. National Science Review, 2018, 5(2): 255-268.
    [2] Liu Shiyin, Yao Xiaojun, Guo Wanqin, et al. The contemporary glaciers in China based on the second Chinese glacier inventory[J]. Acta Geographica Sinica, 2015, 70(1): 3-16. [刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1): 3-16.]
    [3] Che Yanjun, Zhang Mingjun, Li Zhongqin, et al. Glacier mass-balance and length variation observed in China during the periods 1959–2015 and 1930–2014[J]. Quaternary International, 2017, 454: 68-84.
    [4] Ye Qinghua, Zong Jibiao, Tian Lide, et al. Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s 2000 2013[J]. Journal of Glaciology, 2017, 63(238): 273-287.
    [5] Sorg A, Bolch T, Stoffel M, et al. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)[J]. Nature Climate Change, 2012, 2: 725-731.
    [6] Han Hui, Yang Xiaohui, Zhao Jingdong. A study of glacier information extraction methods based on multi-sensors remote sensing images in the Chongce Glacier area, West Kunlun Mountains[J]. Journal of Glaciology and Geocryology, 2018, 40(5): 951-959. [韩惠, 杨晓辉, 赵井东. 西昆仑山崇测冰川区多源遥感影像的冰川信息提取方法研究[J]. 冰川冻土, 2018, 40(5): 951-959.]
    [7] Li Zhongqin, Li Kaiming, Wang Lin. Study on recent glacier changes and their impact on water resources in Xinjiang, North Western China[J]. Quaternary Sciences, 2010, 30(1): 96-106. [李忠勤, 李开明, 王林. 新疆冰川近期变化及其对水资源的影响研究[J]. 第四纪研究, 2010, 30(1): 96-106.]
    [8] Wang Puyu, Li Zhongqin, Li Huilin, et al. Analysis of the relation between glacier volume change and area change in the Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2017, 39(1): 9-15. [王璞玉, 李忠勤, 李慧林, 等. 天山冰川储量变化和面积变化关系分析研究[J]. 冰川冻土, 2017, 39(1): 9-15.]
    [9] Shi Yafeng. Concise glacier inventory of China[M]. Shanghai: Shanghai Popular Science Press, 2008.
    [10] Shi Yafeng, Huang Maohuan, Yao Tandong, et al. Glaciers and their environments in China: the present, past and future[M]. Beijing: Science Press, 2000. [施雅风, 黄茂桓, 姚檀栋, 等. 中国冰川与环境-现在、 过去和未来[M]. 北京: 科学出版社, 2000.]
    [1[1] Xu Junli, Liu Shiyin, Zhang Shiqiang, et al. Recent changes in glacial area and volume on Tuanjiefeng Peak region of Qilian Mountains, China[J]. Plos One, 2013, 8(8): e70574.
    [12] Shangguan Donghui, Bolch T, Ding Yongjian, et al. Mass changes of Southern and Northern Inylchek Glacier, Centra Tian Shan, Kyrgyzstan, during ~1975 and 2007 derived from remote sensing data[J]. The Cryosphere, 2015, 9(2): 703-717.
    [13] Berthier E, Cabot V, Vincent C, et al. Decadal region-wide and glacier-wide mass balances derived from multi-temporal ASTER satellite digital elevation models: validation over the Mont-Blanc Area[J]. Frontiers in Earth Science, 2016, 4: 63.
    [14] Brun F, Berthier E, Wagnon P, et al. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016[J]. Nature Geoscience, 2017, 10(9): 668-673.
    [15] Wang Puyu, Li Zhongqin, Li Huilin, et al. Comparison of glaciological and geodetic mass balance at Urumqi Glacier No.1, Tian Shan, Central Asia[J]. Global and Planetary Change, 2014, 114(469): 14-22.
    [16] Wang Yinsheng, Liu Chaohai, Ding Liangfu, et al. Glacier inventory of China III: Tien Shan mountains (interior drainage area of scattered flow in east)[M]. Beijing: Science Press, 1986. [王银生, 刘潮海, 丁良福, 等. 中国冰川目录(Ⅲ): 天山山区(东部散流内流区)[M]. 北京: 科学出版社, 1986.]
    [17] Luo Guangxiao, Ai Li, Qi Xianming, et al. Hydrological characteristics of the Yushugou valley[J]. Desert and Oasis Meteorology, 2002, 25(5): 19-20. [骆光晓, 艾力, 祁先明, 等. 榆树沟流域水文特征[J]. 沙漠与绿洲气象, 2002, 25(5): 19-20.]
    [18] Luo Guangxiao, Liu Li, Wu Liping, et al. Hydrological characteristics of the Yiwuhe valley[J]. Arid Land Geography, 1999, 22(1): 47-52. [骆光晓, 刘莉, 吴力平, 等. 伊吾河流域水文特性分析[J]. 干旱区地理, 1999, 22(1): 47-52.]
    [19] Wang Yetang, Hou Shugui, Lu Anxin, et al. Response of glacier variations in the eastern Tianshan Mountains to climate change, during the last 40 years[J]. Arid Land Geography, 2008, 31(6): 813-821. [王叶堂, 侯书贵, 鲁安新, 等. 近40年来天山东段冰川变化及其对气候的响应[J]. 干旱区地理, 2008, 31(6): 813-821.]
    [20] Hu Ruji. The glaciation in Karlik Shan, eastern Tien Shan[J]. Arid Land Geography, 1979, 2(1): 71-84. [胡汝骥. 天山东部喀尔里克山峰区的冰川作用[J]. 干旱区地理, 1979, 2(1): 71-84.]
    [2[1] Gao Jianfang, Luo Guangxiao. Analysis of the impact of climate changes on river’s runoff in Hami Prefecture, Xinjiang[J]. Journal of Glaciology and Geocryology, 2009, 31(4): 748-758. [高建芳, 骆光晓. 气候变化对新疆哈密地区河川径流的影响分析[J]. 冰川冻土, 2009, 31(4): 748-758.]
    [22] Liu Guangkui, Wang Zhenlu, Zhao Yongqiang, et al. The conversion method and accuracy analysis between BJ-54 and WGS-84 coordinate system[J]. Geomatics & Spatial Information Technology, 2007, 30(3): 167-168. [柳光魁, 王振禄, 赵永强, 等. BJ-54坐标系与WGS-84坐标系转换方法及精度分析[J]. 测绘与空间地理信息, 2007, 30(3): 167-168.]
    [23] Zhang nan, Dong Xiaojing, Zhang Jian. Study on the coordinate transformation methods and accuracy from WGS-84 to BJ-54[J]. Manufacturing Automation, 2009, 31(12): 162-165. [张楠, 董晓晶, 张健. WGS-84坐标系与BJ-54坐标系的转换方法及精度探讨[J]. 制造业自动化, 2009, 31(12): 162-165.]
    [24] Gardelle J, Berthier E, Arnaud Y. Slight mass gain of Karakoram glaciers in the early Twenty-First Century[J]. Nature Geoscience, 2012, 5(5): 322-325.
    [25] Rodr guez E, Morris C S, Belz J E. A global assessment of the SRTM Performance[J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(3): 249-260.
    [26] Gorokhovich Y, Voustianiouk A. Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics[J]. Remote Sensing of Environment, 2006, 104(4): 409-415.
    [27] Li Peng, Li Zhenhong, Shi Chuang, et al. Quality evaluation of 1 arc second version SRTM DEM in China[J]. Bulletin of Surveying and Mapping, 2016(9): 24-28. [李鹏, 李振洪, 施闯, 等. 中国地区30m分辨率SRTM质量评估[J]. 测绘通报, 2016(9): 24-28.]
    [28] Nuth C, K??b A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change[J]. The Cryosphere, 2011, 5(1): 271-290.
    [29] Paul F. Calculation of glacier elevation changes with SRTM: is there an elevation-dependent bias?[J]. Journal of Glaciology, 2008, 54(54): 945-946.
    [30] Paul F, Haeberli W. Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models[J]. Geophysical Research Letters, 2008, 35(21): 189-203.
    [3[1] Gardelle J, Berthier E, Arnaud Y. Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing[J]. Journal of Glaciology, 2012, 58(208): 419-422.
    [32] Gardelle J, Berthier E, Arnaud Y, et al. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011[J]. The Cryosphere, 2013, 7(4): 1885-1886.
    [33] Zhang Yong, Fujita K, Liu Shiyin, et al. Multi-decadal ice-velocity and elevation changes of a monsoonal maritime glacier: Hailuogou Glacier, China[J]. Journal of Glaciology, 2010, 56(195): 65-74.
    [34] Bolch T, Pieczonka T, Benn D I. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery[J]. Cryosphere, 2011, 5(2): 349-358.
    [35] Wei Junfeng, Liu Shiyin, Guo Wanqin, et al. Changes in glacier volume in the north bank of the Bangong Co Basin from 1968 to 2007 based on Historical Topographic Maps, SRTM, and ASTER stereo images[J]. Arctic Antarctic & Alpine Research, 2015, 47(2): 301-311.
    [36] Zemp M, Jansson P, Holmlund P, et al. Reanalysis of multi-temporal aerial images of Storglaci?ren, Sweden (1959-99) - Part 2: comparison of glaciological and volumetric mass balances[J]. The Cryosphere, 2010, 4(3): 345-357.
    [37] K??b A, Berthier E, Nuth C, et al. Contrasting patterns of early Twenty-First-Century glacier mass change in the Himalayas[J]. Nature, 2012, 488(7412): 495-498.
    [38] Huss M. Density assumptions for converting geodetic glacier volume change to mass change[J]. The Cryosphere, 2013, 7(3): 877-887.
    [39] Pieczonka T, Bolch T. Region-wide glacier mass budgets and area changes for the Central Tien Shan between ~1975 and 1999 using Hexagon KH-9 imagery[J]. Global and Planetary Change, 2015, 128: 1-13.
    [40] Gao Zhao. Analysis of the glacier ablationin on high mountains in Hami area from the runoff change in the Yiwu River basin[J]. Heilongjiang Science and Technology of Water Conservancy, 2010, 38(1): 10-12. [高照. 从伊吾河流域径流量变化分析哈密地区高山区冰川消融[J]. 黑龙江水利科技, 2010, 38(1): 10-12.]
    [4[1] Li Kaiming, Li Zhongqin, Gao Wenyu, et al. Recent glacial retreat and its effect on water resources in eastern Xinjiang[J]. Science Bulletin, 2011, 56(33): 3596-3604.
    [42] Yao Tandong, Thompson L, Wei Yang, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700