基于纳米材料比色传感器的构建及其应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Construction and application of nanomaterials-based colorimetric sensors
  • 作者:苏邵 ; 李晶 ; 汪联辉
  • 英文作者:SU Shao;LI Jing;WANG Lianhui;Institute of Advanced Materials ( IAM) ,Nanjing University of Posts and Telecommunications;Key Laboratory for Organic Electronics & Information Displays ( KLOEID);Jiangsu Key Laboratory for Biosensors;
  • 关键词:纳米材料 ; 比色法 ; 传感器 ; 检测
  • 英文关键词:nanomaterials;;colorimetry;;sensors;;detection
  • 中文刊名:NJYD
  • 英文刊名:Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition)
  • 机构:南京邮电大学信息材料与纳米技术研究院;有机电子与信息显示国家重点实验室培育基地;江苏省传感材料与技术重点实验室;
  • 出版日期:2018-06-15
  • 出版单位:南京邮电大学学报(自然科学版)
  • 年:2018
  • 期:v.38;No.176
  • 基金:国家自然科学基金(61671250,21475064)资助项目
  • 语种:中文;
  • 页:NJYD201803016
  • 页数:13
  • CN:03
  • ISSN:32-1772/TN
  • 分类号:102-114
摘要
比色检测可将目标物识别事件转变为颜色变化,具有操作简单、肉眼可见和不需要昂贵或复杂的仪器等优势,已被广泛应用于环境污染监控、食品安全监测、生化分析以及疾病诊断等领域。随着纳米科技的发展,纳米材料因其优异的光学性质、良好的生物相容性、高的催化活性和易于表面功能化等优点,已被广泛用于构建比色传感器,极大提升了比色传感平台或比色传感器件的检测灵敏度和稳定性,为比色传感器的发展注入了新的活力。文中系统总结了纳米材料在构建比色传感器中的作用机制,并综述了自2010年以来基于纳米材料的比色传感器对重金属离子、有机磷化合物、食品添加剂、生物小分子、药物小分子、肿瘤标志物以及肿瘤细胞等分析物检测的研究进展。
        Colorimetric detection can transform target molecules recognition events into color changes,and has advantages of simple operation,visible to the naked eyes and no need for expensive or complicated equipment. At present,colorimetric sensors have been widely used in environmental pollution monitoring,food safety monitoring,biochemical analysis,disease diagnosis,and other fields. With the development of the nanotechnology,nanomaterials have been successfully introduced into the construction of colorimetric sensors due to their excellent optical properties,good biocompatibility,high catalytic activity,and easy surface functionalization,improving the detection sensitivity and the stability of colorimetric sensors. Therefore,the introduction of nanomaterials brings new vitality to the development of colorimetric sensors. The mechanism of nanomaterials in the construction of colorimetric sensors is systematically summarized. This paper reviews the advances of colorimetric sensors in the detection of heavy metal ions,organophosphorus compounds,food additives,small biological molecules,small drug molecules,tumor markers,and cancer cells since 2010.
引文
[1]HOOKER S A.Nanotechnology advantages applied to gas sensor development[C]∥The Nanoparticles 2002 Conference Proceedings.2002.
    [2]ZHU D,LIU W,ZHAO D X,et al.Label-free electrochemical sensing platform for microRNA-21 detection using thionine and gold nanoparticles Co-functionalized Mo S2nanosheet[J].ACS Applied Materials&Interfaces,2017,9(41):35597-35603.
    [3]QIAN Z S,SHAN X Y,CHAI L J,et al.A universal fluorescence sensing strategy based on biocompatible graphene quantum dots and graphene oxide for the detection of DNA[J].Nanoscale,2014,6(11):5671-5674.
    [4]SONG C Y,CHEN J,ZHAO Y P,et al.Gold-modified silver nanorod arrays for SERS based immunoassays with improved sensitivity[J].Journal of Materials Chemistry B,2014,2(43):7488-7494.
    [5]LI H,YIN Z Y,HE Q Y,et al.Fabrication of single-and multilayer Mo S2film-based field-effect transistors for sensing NO at room temperature[J].Small,2012,8(1):63-67.
    [6]LI X H,CHEN G Y,YANG L B,et al.Multifunctional Aucoated Ti O2nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection[J].Advanced Functional Materials,2010,20(17):2815-2824.
    [7]VASUDEVAVENDAN C,KHAN B A A,KUMAR V V,et al.A facile route to synthesize casein capped copper nanoparticles:an effective antibacterial agent and selective colorimetric sensor for mercury and tryptophan[J].RSC Advances,2014,4(63):33215-33221.
    [8]CHAO J,ZHU D,ZHANG Y N,et al.DNA nanotechnology-enabled biosensors[J].Biosensors and Bioelectronics,2016,76:68-79.
    [9]PALAPURAVAN A,SIVARAMAPANICKER S,AYYAPPANPILLAI A.Self-assembled near-infrared dye nanoparticles as a selective protein sensor by activation of a dormant fluorophore[J].Journal of the American Chemical Society,2014,136(38):13233-13239.
    [10]LEE J H,OH B K,CHOI J W.Electrochemical sensor based on direct electron transfer of HIV-1 virus at Au nanoparticle modified ITO electrode[J].Biosensors and Bioelectronics,2013,49:531-535.
    [11]WANG Y Z,HAO N,FENG Q M,et al.A ratiometric electrochemiluminescence detection for cancer cells using g-C3N4nanosheets and Ag-PAMAM-luminol nanocomposites[J].Biosensors and Bioelectronics,2016,77:76-82.
    [12]CHANG S K,DIZEM A,REBEKAH A D,et al.Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue:comparison with Monte Carlo simulations and clinical measurements[J].Journal of Biomedical Optics,2004,9(3):511-522.
    [13]JIANG Y,ZHAO H,LIN Y Q,et al.Colorimetric detection of glucose in rat brain using gold nanoparticles[J].Angewandte Chemie International Edition,2010,122(28):4910-4914.
    [14]LIN L,SONG X,CHEN Y,et al.Intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots and their application in the colorimetric detection of H2O2and glucose[J].Analytica Chimica Acta,2015,869:89-95.
    [15]DING N,YAN N,REN C L,et al.Colorimetric determination of melamine in dairy products by Fe3O4magnetic nanoparticles-H2O2-ABTS detection system[J].Analytical Chemistry,2010,82(13):5897-5899.
    [16]WANG N,SUN J,CHEN L,et al.A Cu2(OH)3Cl-Ce O2nanocomposite with peroxidase-like activity,and its application to the determination of hydrogen peroxide,glucose and cholesterol[J].Microchimica Acta,2015,182(9/10):1733-1738.
    [17]ASATI A,SANTRA S,KAITTANIS C,et al.Oxidase-like activity of polymer-coated cerium oxide nanoparticles[J].Angewandte Chemie International Edition,2009,121(13):2344-2348.
    [18]CHOI I,LEE L P.Rapid detection of Aβaggregation and inhibition by dual functions of gold nanoplasmic particles:catalytic activator and optical reporter[J].ACS Nano,2013,7(7):6268-6277.
    [19]BALA R,KUMAR M,BANSAL K,et al.Ultrasensitive aptamer biosensor for malathion detection based on cationic polymer and gold nanoparticles[J].Biosensors and Bioelectronics,2016,85:445-449.
    [20]TANG L H,LI J H.Plasmon-based colorimetric nanosensors for ultrasensitive molecular diagnostics[J].ACS Sensors,2017,2(11):857-875.
    [21]HOWES P D,RANA S,STEVENS M M.Plasmonic nanomaterials for biodiagnostics[J].Chemical Society Reviews,2014,43(11):3835-3853.
    [22]ZHOU W,GAO X,LIU D B,et al.Gold nanoparticles for in vitro diagnostics[J].Chemical Reviews,2015,115(19):10575-10636.
    [23]PATERSON S,DE LA RICA R.Solution-based nanosensors for in-field detection with the naked eye[J].Analyst,2015,140(10):3308-3317.
    [24]ZHENG W S,JIANG X Y.Integration of nanomaterials for colorimetric immunoassays with improved performance:a functional perspective[J].Analyst,2016,141(4):1196-1208.
    [25]ELGHANIAN R,STORHOFF J J,MUCIC R C,et al.Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles[J].Science,1997,277(5329):1078-1081.
    [26]PENG C F,DUAN X H,KHAMBA G W,et al.Highly sensitive“signal on”plasmonic ELISA for small molecules by the naked eye[J].Analytical Methods,2014,6(24):9616-9621.
    [27]MATTHEW R,CLAIRE M C,ZENG J,et al.Controlling the synthesis and assembly of silver nanostructures for plasmonic applications[J].Chemical Reviews,2011,111(6):3669-3712.
    [28]CHINTA J P.Coinage metal nanoparticles based colorimetric assays for natural amino acids:a review of recent developments[J].Sensors and Actuators B,2017,248:733-752.
    [29]SAHA K,AGASTI S S,KIM C,et al.Gold nanoparticles in chemical and biological sensing[J].Chemical Reviews,2012,112(5):2739-2779.
    [30]VERMA M S,ROGOWSKI J L,JONES L,et al.Colorimetric biosensing of pathogens using gold nanoparticles[J].Biotechnology Advances,2015,33(6):666-680.
    [31]LIM W Q,GAO Z Q.Plasmonic nanoparticles in biomedicine[J].Nano Today,2016,11(2):168-188.
    [32]DENG J J,JIANG Q,WANG Y X,et al.Real-time colorimetric assay of inorganic pyrophosphatase activity based on reversibly competitive coordination of Cu2+between cysteine and pyrophosphate ion[J].Analytical Chemistry,2013,85(19):9409-9415.
    [33]MAO Y,FAN T T,RACHEL G,et al.A simple and sensitive aptasensor for colorimetric detection of adenosine triphosphate based on unmodified gold nanoparticles[J].Talanta,2017,168:279-285.
    [34]LIU J M,JIAO L,LIN L P,et al.Non-aggregation based label free colorimetric sensor for the detection of Cu2+based on catalyzing etching of gold nanorods by dissolve oxygen[J].Talanta,2013,117:425-430.
    [35]YANG X H,LING J,PENG J,et al.A colorimetric method for highly sensitive and accurate detection of iodide by finding the critical color in a color change process using silver triangular nanoplates[J].Analytica Chimica Acta,2013,798:74-81.
    [36]ZHANG Z Y,CHEN Z P,WANG S S,et al.Iodine-mediated etching of gold nanorods for plasmonic ELISA based on colorimetric detection of alkaline phosphatase[J].ACS Applied Materials&Interfaces,2015,7(50):27639-27645.
    [37]KOU X,ZHANG S,YANG Z,et al.Glutathione-and cysteineinduced transverse overgrowth on gold nanorods[J].American Chemical Society,2007,129(20):6402-6404.
    [38]GUO X,ZHANG Q,SUN Y,et al.Lateral etching of coreshell Au@metal nanorods to metal-tipped Au nanorods with improved catalytic activity[J].ACS Nano,2012,6(2):1165-1175.
    [39]CORONASO-PUCHAU M,SA L,GRZELCZAK M,et al.Enzymatic modulation of gold nanorod growth and application to nerve gas detection[J].Nano Today,2013,8(5):461-468.
    [40]WU S,LI D D,GAO Z M,et al.Controlled etching of gold nanorods by the Au(III)-CTAB complex,and its application to semi-quantitative visual determination of organophosphorus pesticides[J].Microchimica Acta,2017,184(11):4383-4391.
    [41]LIN Y,REN J,QU X.Catalytically active nanomaterials:a promising candidate for artificial enzymes[J].Journal of Chemical Research,2014,47(4):1097-1105.
    [42]WEI H,WANG E.Nanomaterials with enzyme-like characteristics(nanozymes):next-generation artificial enzymes[J].Chemical Society Reviews,2013,42(14):6060-6093.
    [43]GAO L Z,ZHUANG J,NIE L,et al.Intrinsic peroxidaselike activity of ferromagnetic nanoparticles[J].Nature Nanotechnology,2007,2(9):577-583.
    [44]MU J S,WANG Y,ZHAO M,et al.Intrinsic peroxidaselike activity and catalase-like activity of Co3O4nanoparticles[J].Chemical Communications,2012,48(19):2540-2542.
    [45]CHEN W,CHEN J,LIU A L,et al.Peroxidase-like activity of cupric oxide nanoparticle[J].Chem Cat Chem,2011,3(7):1151-1154.
    [46]LIU J B,HU X N,HOU S,et al.Au@Pt core/shell nanorods with peroxidase-and ascorbate oxidase-like activities for improved detection of glucose[J].Sensors and Actuators B:Chemical,2012,166:708-714.
    [47]ROY P,LIN Z H,LIANG C T,et al.Synthesis of enzyme mimics of iron telluride nanorods for the detection of glucose[J].Chemical Communications,2012,48(34):4079-4081.
    [48]JU L L,CHEN Z Y,FANG L,et al.Sol-gel synthesis and photo-fenton-like catalytic activity of Eu Fe O3nanoparticles[J].Journal of the American Ceramic Society,2011,94(10):3418-3424.
    [49]BORELLI V,TREVISAN E,VITA F,et al.Peroxidaselike activity of ferruginous bodies isolated by exploiting their magnetic property[J].Journal of Toxicology and Environmental Health,2012,75(11):603-623.
    [50]SONG Y J,QU K G,ZHAO C,et al.Graphene oxide:intrinsic peroxidase catalytic activity and its application to glucose detection[J].Advanced Materials,2010,22(19):2206-2210.
    [51]WEI W,ZHANG D M,LI H N,et al.Label-free and rapid colorimetric detection of DNA damage based on self-assembly of a hemin-graphene nanocomposite[J].Microchimica Acta,2014,181(13/14):1557-1563.
    [52]MALVI B,PANDA C,DHAR B B,et al.One pot glucose detection by[Fe III(biuret-amide)]immobilized on mesoporous silica nanoparticles:an efficient HRP mimic[J].Chemical Communications,2012,48(43):5289-5291.
    [53]ZHOU H C,LONG R J,YAGHI O M.Introduction to metal-organic frameworks[J].Chemical Reviews,2012,112(1):673-674.
    [54]YANG G S,LANG Z L,ZANG H Y,et al.Control of interpenetration in S-containing metal-organic frameworks for selective separation of transition metal ions[J].Chemical Communications,2013,49(11):1088-1090.
    [55]CHEN Y J,CAO H Y,SHI W B,et al.Fe-Co bimetallic alloy nanoparticles as a highly active peroxidase mimetic and its application in biosensing[J].Chemical Communications,2013,49(44):5013-5015.
    [56]LAM E,HRAPOVIC S,MAJID E,et al.Catalysis using gold nanoparticles decorated on nanocrystalline cellulose[J].Nanoscale,2012,4(3):997-1002.
    [57]XIAO L P,ZHU A M,XU Q C,et al.Colorimetric biosensor for detection of cancer biomarker by Au nanoparticledecorated Bi2Se3nanosheets[J].ACS Applied Materials&Interfaces,2017,9(8):6931-6940.
    [58]LIU D B,QU W S,CHEN W W,et al.Highly sensitive,colorimetric detection of mercury(II)in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature[J].Analytical Chemistry,2010,82(23):9606-9610.
    [59]SHI X,GU W,ZHANG C,et al.A label-free colorimetric sensor for Pb2+detection based on the acceleration of gold leaching by graphene oxide[J].Dalton Transactions,2015,44(10):4623-4629.
    [60]ZHANG K,YU T,LIU F,et al.Selective fluorescence turn-on and ratiometric detection of organophosphate using dual-emitting Mn-doped Zn S nanocrystal probe[J].Analytical Chemistry,2014,86(23):11727-11733.
    [61]BALA R,DHINGRA S,KUMAR M,et al.Detection of organophosphorus pesticide-Malathion in environmental samples using peptide and aptamer based nanoprobes[J].Chemical Engineering Journal,2017,311:111-116.
    [62]QIAN S H,LIN H W.Colorimetric sensor array for detection and identification of organophosphorus and carbamate pesticides[J].Analytical Chemistry,2015,87(10):5395-5400.
    [63]CHAFER-PERICAS C,MAQUIEIRA,PUCHADES R.Fast screening methods to detect antibiotic residues in food samples[J].Trends in Analytical Chemistry,2010,29(9):1038-1049.
    [64]ZHU K,LI J,WANG Z,et al.Simultaneous detection of multiple chemical residues in milk using broad-specificity antibodies in a hybrid immunosorbent assay[J].Biosensors and Bioelectronics,2011,26:2716-2719.
    [65]JIANG W X,WANG Z H,BEIER R C,et al.Simultaneous determination of 13 fluoroquinolone and 22 sulfonamide residues in milk by a dual-colorimetric enzyme-linked immunosorbent assay[J].Analytical Chemistry,2013,85(4):1995-1999.
    [66]XING H B,ZHAN S S,WU Y G,et al.Sensitive colorimetric detection of melamine in milk with an aptamermodified nanogold probe[J].RSC Advances,2013,3(38):17424-17430.
    [67]EVANS A M,DEHAVEN C D,BARRETT T,et al.Integrated,nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems[J].Analytical Chemistry,2009,81(16):6656-6667.
    [68]VELUGULA K,CHINTA J P.Silver nanoparticles ensemble with Zn(II)complex of terpyridine as a highly sensitive colorimetric assay for the detection of Arginine[J].Biosensors and Bioelectronics,2017,87:271-277.
    [69]SU H Y,ZHENG Q L,LI H B.Colorimetric detection and separation of chiral tyrosine based on N-acetyl-L-cysteine modified gold nanoparticles[J].Journal of Materials Chemistry,2012,22(14):6546-6548.
    [70]LI H B,LI F Y,HAN C P,et al.Highly sensitive and selective tryptophan colorimetric sensor based on 4,4-bipyridine-functionalized silver nanoparticles[J].Sensors and Actuators B:Chemical,2010,145(1):194-199.
    [71]ZHU B C,ZHANG X L,LI Y M,et al.A colorimetric and ratiometric fluorescent probe for thiols and its bioimaging applications[J].Chemical Communications,2010,46(31):5710-5712.
    [72]WEN D,LIU W,HERRMANN A K,et al.Simple and sensitive colorimetric detection of dopamine based on assembly of cyclodextrin-modified Au nanoparticles[J].Small,2016,12(18):2439-2442.
    [73]ZHANG S Q,WANG K,LI J L,et al.Highly efficient colorimetric detection of ATP utilizing a split aptamer target binding strategy and superior catalytic activity of graphene oxide-platinum/gold nanoparticles[J].RSC Advances,2015,5(92):75746-75752.
    [74]KUPELI E,KOSAR M,YESILADA E,et al.A comparative study on the anti-inflammatory,antinociceptive and antipyretic effects of isoquinoline alkaloids from the roots of Turkish Berberis species[J].Life Sciences,2002,72(6):645-657.
    [75]LEE W C,KIMA J K,KANG J W,et al.Palmatine attenuates D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure in mice[J].Food and Chemical Toxicology,2010,48(1):222-228.
    [76]HOU T,WANG X Z,LIU X J,et al.A label-free and colorimetric turn-on assay for coralyne based on coralyne-induced formation of peroxidase-mimicking split DNAzyme[J].Analyst,2013,138(17):4728-4731.
    [77]TAN K J,LI J Y,LI H C,et al.A highly sensitive dualreadout assay based on poly(A)and gold nanoparticles for palmatine hydrochloride[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2014,122(25):198-203.
    [78]KARUNA A R,KIRAN R S,SURESH K K.One-pot synthesis of gold nanoparticles by using 4-aminoantipyrine as a novel reducing and capping agent for simultaneous colorimetric sensing of four triptan-family drugs[J].Analytical Methods,2014,6(15):5972-5980.
    [79]LI Y J,MA M J,ZHU J J.Dual-signal amplification strategy for ultrasensitive photoelectrochemical immunosensing ofα-fetoprotein[J].Analytical Chemistry,2012,84(23):10492-10499.
    [80]LILJA H,ULMERT D,VICKERS A J.Prostate-specific antigen and prostate cancer:prediction,detection and monitoring[J].Nature Reviews Cancer,2008,8(4):268-278.
    [81]GUO Y J,DENG L,LI J,et al.Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for labelfree colorimetric detection of single-nucleotide polymorphism[J].ACS Nano,2011,5(2):1282-1290.
    [82]LUO R,LI Y H,LIN X J,et al.A colorimetric assay method for inv A gene of Salmonella using DNAzyme probe self-assembled gold nanoparticles as single tag[J].Sensors and Actuators B:Chemical,2014,198(31):87-93.
    [83]HUANG Y,CHEN J,ZHAO S,et al.Label-free colorimetric aptasensor based on nicking enzyme assisted signal amplification and DNAzyme amplification for highly sensitive detection of protein[J].Analytical Chemistry,2013,85(9):4423-4430.
    [84]LU Z,LIU M,STRIBINSKIS V,et al.MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene[J].Oncogene,2008,27(31):4373-4379.
    [85]MEDINA P P,SLACK F J.MicroRNAs and cancer:an overview[J].Cell Cycle,2008,7(16):2485-2492.
    [86]MIAO X M,NING X,LI Z B,et al.Sensitive detection of microRNA by using hybridization chain reaction coupled with positively charged gold nanoparticles[J].Scientific Reports,2016,6:32358.
    [87]LI R D,YIN B C,YE B C.Ultrasensitive,colorimetric detection of microRNAs based on isothermal exponential amplification reaction-assisted gold nanoparticle amplification[J].Biosensors and Bioelectronics,2016,86:1011-1016.
    [88]LIANG J J,YAO C Z,LI X Q,et al.Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen[J].Biosensors and Bioelectronics,2015,69:128-134.
    [89]LI Y R,WU J,ZHANG C,et al.Manganese dioxide nanoparticle-based colorimetric immunoassay for the detection of alpha-fetoprotein[J].Microchimica Acta,2017,184(8):2767-2774.
    [90]LI C,YANG Y C,WU D,et al.Improvement of enzymelinked immunosorbent assay for the multicolor detection of biomarkers[J].Chemical Science,2016,7(5):3011-3016.
    [91]WENG J,ZHANG Z,SUN L P,et al.High sensitive detection of cancer cell with a folic acid-based boron-doped diamond electrode using an AC impedimetric approach[J].Biosensors and Bioelectronics,2011,26:1847-1852.
    [92]HONG W,LEE S,CHANG H J,et al.Multifunctional magnetic nanowires:a novel breakthrough for ultrasensitive detection and isolation of rare cancer cells from nonmetastatic early breast cancer patients using small volumes of blood[J].Biomaterials,2016,106:78-86.
    [93]LU W T,YU H T,PARESH C R,et al.Multifunctional oval-shaped gold nanoparticle-based selective detection of breast cancer cells using simple colorimetric and highly sensitive twophoton scattering assay[J].ACS Nano,2010,4(3):1739-1749.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700