磷钨酸掺杂高比表面积g-C_3N_4催化剂的制备及其光催化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of High Specific Surface Area g-C_3N_4 Doping by Phosphotungstic Acid and Its Photocatalytic Properties
  • 作者:张杰 ; 蔡天凤 ; 李会鹏 ; 赵华
  • 英文作者:ZHANG Jie;CAI Tian-feng;LI Hui-peng;ZHAO Hua;Division of Chemistry,Chemical Engineering and Environment,Liaoning Shihua University;
  • 关键词:磷钨酸(HPW)掺杂 ; 比表面积g-C_3N_4 ; 光催化性能 ; 罗丹明B(RhB)
  • 英文关键词:doped by phosphotungstic acid(HPW);;high specific surface area g-C_3N_4;;photocatalytic property;;rhodamine B(RhB)
  • 中文刊名:RGJT
  • 英文刊名:Journal of Synthetic Crystals
  • 机构:辽宁石油化工大学化学化工与环境学部;
  • 出版日期:2019-01-15
  • 出版单位:人工晶体学报
  • 年:2019
  • 期:v.48;No.243
  • 基金:辽宁省自然科学基金(201202019)
  • 语种:中文;
  • 页:RGJT201901017
  • 页数:9
  • CN:01
  • ISSN:11-2637/O7
  • 分类号:106-114
摘要
以三聚氰胺、磷钨酸(HPW)为原料SBA-15为模板剂,成功制备了HPW掺杂高比表面积g-C_3N_4。采用傅里叶红外变换(FTIR)光谱、X射线衍射(XRD)光谱、X光电子能谱(XPS)、氮气吸附脱附(BET)、扫描电镜(SEM)、紫外可见(UV-Vis)漫反射光谱、荧光(PL)光谱进行表征。结果表明,比表面积的增加以及HPW的掺杂均能够提高催化剂的光催化性能,降低带隙能,降低光生电子-空穴的复合几率。以罗丹明B(Rh B)为考察对象,对催化剂在氙灯照射下的催化活性以及稳定性进行考察。结果表明,HPW掺杂的高比表面积g-C_3N_4催化活性最高,反应速率常数为0. 0269 min-1,是块状g-C_3N_4的13倍,且循环使用4次后的光降解活性几乎不变。以叔丁醇、对苯醌、乙二胺四乙酸二钠为自由基(·OH)、自由基(·O2-)和空穴(h+VB)的捕获剂,研究了光催化反应机理。
        Using melamine,phosphotungstic acid(HPW) as raw materials and SBA-15 as template,a series of high specific surface area g-C_3N_4 doped by phosphotungstic acid(HPW) were prepared. The structure of samples were characterized by Fourier-transform infrared(FT-IR), X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),N2 adsorption-desorption spectrum,scanning electron microscope(SEM), Transmission electron microscope(TEM), ultraviolet-visible(UV-Vis)spectroscopy,photoluminescence(PL). The results indicate that the increase of specific surface area and the doping of HPW can improve the photocatalytic performance,increase the separation rates of the photogenerated electrons and holes. The photocatalytic activity and stability of samples were evaluated by the degradation of rhodamine B(RhB) under xenon lamp. The results indicate that the high specific surface area g-C_3N_4 doped by HPW(CN-3) has the higher activity. The rate constant for CN-3 is 13 times as high as g-C_3N_4 and the reaction rate constant is 0. 0269 min-1. Furthermore,the activity of the CN-3 catalyst is almost unchanged after four cycles. Disodium ethylenediamine,tetraacetate,tert-butyl alcohol,and 1,4-benzoquinone are used as hole(h+VB),hydroxyl radical(· OH),and superoxideradical(·O2-) scavengers,respectively,to investigate the possiblemechanism.
引文
[1] Wang C Y,Zhang X,Song X N,et al. A Novel Bi12O15Cl16photocatalyst for the degradation of bisphenol a under visible light irradiation[J].ACS Appl. Mater. Interfaces,2016,8(6):5320-5326
    [2] Xu T Y,Zhu R L,Zhu J X,et al. Ag3PO4immobilized on hydroxyl-metal pillared montmorillonite for the visible-light-driven degradation of acid red 18[J]. Catalysis Science&Technology,2016,6(12):4116-4123.
    [3]金瑞瑞,游继光,张倩,等. Fe掺杂g-C3N4的制备及其可见光催化性能[J].物理化学学报,2014,30(9):1706-1712.
    [4] Yuan B,Wei J X,Hu T J,et al. Simple synthesis of g-C3N4/r GO hybrid catalyst for the photocatalytic degradation of rhodamine B[J]. Chinese Journal of Catalysis,2015,36(7):1009-1016.
    [5] Zuo H W,Lu C H,Ren Y R,et al. Pt4Clusters Supported on Monolayer Graphitic Carbon Nitride Sheets for Oxygen Adsorption:A FirstPrinciples Study[J]. Acta Phys.-Chim. Sin.,2016,32(5):1183-1190.
    [6] Yan X M,Mei Z K,Mei P,et al. Self-assembled HPW/silica-alumina mesoporous nanocomposite as catalysts for oxidative desulfurization of fuel oil[J]. J Porous Mater,2014(21):729-737.
    [7] Fujishima A,Honda K. Photolysis-decomposition of water at the surface of an irradiated semiconductor[J]. Nature,1972,238(5385):37-38.
    [8] Zeng Z X,Li K X,Wei K,et al. Fabrication of highly dispersed platinum-deposited porous g-C3N4by a simple in situ photoreduction strategy and their excellentvisible light photocatalytic activity toward aqueous 4-fluorophenoldegradation[J]. Chinese Journal of Catalysis,2017(38):29-38.
    [9] Zhu A Q,Qiao L L,Jia Z Q,et al. C-S bond induced ultrafine SnS2dot/porous g-C3N4sheet 0D/2D heterojunction:synthesis and photocatalytic mechanism investigation[J]. Dalton Trans,2017,46:17032-17040.
    [10] Huang Z J,Li F B,Chen B F,et al. Well-dispersed g-C3N4nano-phases in mesoporous silica channels and their catalytic activity forcarbon dioxide activation and conversion[J]. Applied Catalysis B:Environmental,2013,136:269-277.
    [11]曲晓钰,胡绍争,李萍,等.镍掺杂石墨相氮化碳的熔盐辅助微波法制备及光催化固氮性能[J].高等学校化学学报,2017,38(12):2280-2288.
    [12] Navarro Terga RM,Alvarez galcan MC,del Valle F,et al Water splitting on semiconductor catalysts under visible-light irradiation[J].Chemsuschem,2009,2(6):471-485.
    [13] Zheng Y,Lin L,Ye X,et al. Helical graphitic carbon nitrides with photocatalytic and optical activities[J]. Angewandte Chemie,2014,53(44):11926-11930.
    [14] Zou X X,Li G D,Wang Y N,et al. Direct Conversion of Urea into Graphitic Carbon Nitride over Mesoporous Ti O2Sphere under Mild Condition[J]. Chem. Commun,2011,47(3):1066-1069.
    [15] Guo Y,Chu S,Yan S,et al. Developing a polymeric semiconductor photocatalyst with visible light response[J]. Chemical Communications,2010,46(39):7325-7327.
    [16]张海燕,代跃进,蔡蕾,等.杂多酸催化剂催化氧化脱硫研究进展[J].化工进展,2013,32(4):809-814.
    [17]李松田,吴春笃,闫永胜,等.杂多酸光催化降解有机污染物[J].化学进展,2008,20(5):690-697.
    [18] Zhang X T,Zhu Y F,Huang P C,et al. Phosphotungstic acid on zirconia-modified silica as catalyst for oxidative desulfurization[J]. RSC Adv,2016,6:69357-69364.
    [19]张金水,王博,王心晨.石墨相氮化碳的化学合成及应用[J].物理化学学报,2013,29(9):1865-1876.
    [20] Ma L,Jia L H,Guo X F,et al. Catalytic activity of Ag/SBA-15 for low-temperature gas-phase selective oxidation of benzyl alcohol to benzaldehyde[J]. Chinese Journal of Catalysis,2014(35):108-119.
    [21] Ge J H,Zhou Y M,Yang Y,et al. Catalytic Oxidative Desulfurization of Gasoline Using lonic Liquid Emulsion System[J]. Ind. Eng. Chem.Res,2011,50:13686-13692.
    [22] Sengupta A,Kamble P D,Basu J K,et al. Kinetic study and optimization of oxidative desulfurization of benzothiophene using mesoporous titannium silicate-1 catalyst[J]. Ind. Eng. Chem. Res,2011,51:147-157.
    [23] Li X,Zhang J,Shen L,et al Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine[J]. Applied Physics A Materials Science&Processing,2009,94(2):387-392.
    [24] Zeng Z X,Li K X,Wei K,et al. Fabrication of highly dispersed platinum-deposited porous g-C3N4by a simple in situ photoreduction strategy and their excellent visible light photocatalytic activity toward aqueous 4-fluorophenol degradation[J]. Chinese Journal of Catalysis,2017,1(38):29-38.
    [25]陈维林,王恩波.多酸化学[M].北京:科学出版社,2016:52-59.
    [26]张健,王彦娟,胡绍争.钾离子掺杂对石墨型氮化碳光催化剂能带结构及光催化性能的影响[J].物理化学学报,2015,31(1):159-165.
    [27]毛丽萍,玉轶聪,史妍,等. Keggin型Sn单取代的杂多酸盐催化合成环己酮[J].精细化工,2017,34(3):300-306
    [28] Luo G Q,Kang L H,Zhu M Y,et al. Highly active phosphotungstic acidimmobilized on aminofunctionalized MCM-41 for the oxide sulfurization of dibenzothiophene[J]. Fuel Processing Technology,2014,118(1):20-27.
    [29] Liu J,Lei J D,He J,et al. Hydroprocessing of jatropha oil for production of green diesel over non-sulfided ni-PTA/Al2O3catalyst[J]. Scientific Reports,2015,5:11327-11340
    [30] Wang C,Hu L Y,Wang M Y,et al. Vanadium supported on graphitic carbon nitride as a heterogeneous catalyst for the direct oxidation of benzene to phenol[J]. Chinese Journal of Catalysis,2016(37):2003-2008.
    [31]刘建新,王韵芳,王雅文. Ag/Ag3PO4/g-C3N4复合光催化剂的合成与再生及其可见光下的光催化性能[J].物理化学学报,2014,30(4):729-737.
    [32] Zhang G,Zhang J,Zhang M,et al. Polycondensation of thiourea into carbon nitride semiconductorw as visible light photocatalysts[J]. Journal of Materials Chemistry,2012,22(16):8083-8091.
    [33] Niu P,ZhangL L,Liu G,et al. Graphene-like crabon nitride nanosheets for improved photocatalytic activities[J]. Adv. Funct. Mater,2012,22:4763-4770.
    [34] Zhang X D,Xie X,Wang H,et al. Enhanced Photoresponsive Ultrathin Graphitic-Phase g-C3N4Nanosheets for Bioimaging[J]. Journal of the American Chemical Society,2013,135(1):18-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700