NV色心浓度与退火温度的Boltzmann模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Boltzmann Model of NV Color Center Concentration and Annealing Temperature
  • 作者:王知权 ; 王宇 ; 李想 ; 倪铭颢 ; 陈晔 ; 李波
  • 英文作者:WANG Zhi-quan;WANG Yu;LI Xiang;NI Ming-hao;CHEN Ye;LI Bo;Key Laboratory of Polarized Materials and Devices,Ministry of Education,Department of Photoelectric Science and Engineering,East China Normal University;
  • 关键词:NV色心 ; 荧光光谱 ; 退火温度 ; 玻尔兹曼模型 ; 电子辐照
  • 英文关键词:NV color centers;;fluorescence spectrum;;annealing temperature;;Boltzmann model;;electron irradiation
  • 中文刊名:RGJT
  • 英文刊名:Journal of Synthetic Crystals
  • 机构:华东师范大学光电科学与工程系极化材料与器件教育部重点实验室;
  • 出版日期:2019-05-15
  • 出版单位:人工晶体学报
  • 年:2019
  • 期:v.48;No.247
  • 基金:国家自然科学基金(11575062,61227902);; 国家重点研发计划(2016YFB0501604)
  • 语种:中文;
  • 页:RGJT201905008
  • 页数:6
  • CN:05
  • ISSN:11-2637/O7
  • 分类号:65-69+88
摘要
金刚石NV色心具有室温可观测到的零声子线,发光稳定,相干时间长等优秀的光学特性,可实现高精度的物理量探测和量子调控。其中,NV色心的浓度是影响其宏观性能和应用的关键因素之一。这项研究分析了不同退火温度下金刚石NV色心的荧光光谱,研究了两种不同电子注入剂量下NV色心浓度与退火温度的关系。首先,通过电子辐照,高温退火等技术制备了含有不同浓度NV色心的金刚石样品。然后测量分析了不同制备条件下NV色心的荧光光谱,求得了其声子带的总荧光强度来表征NV色心浓度。分析了NV色心浓度与退火温度的关系,根据不同温度范围NV色心浓度的变化情况提出了抑制区、扩散区和饱和区三个分区。根据实验数据拟合得到了NV色心浓度与退火温度的玻尔兹曼模型,并得到了在780℃附近NV色心浓度的变化速率最快。
        Nitrogen-Vacancy( NV) centers of diamond has excellent optical properties such as zero phonon line( ZPL)observed at room temperature,stable luminescence,long coherence time,etc. The concentration of NV centers is one of the important factors affecting its performance and application. In this study,the fluorescence spectra of diamond NV centers at different annealing temperatures were analyzed. The relationship between NV center concentration and annealing temperature at two different electron injection doses was studied. First,diamond samples containing different concentrations of NV centers were prepared by electron irradiation and high temperature annealing. Then,the fluorescence spectra of NV centers under different preparation conditions were measured and analyzed,and the total fluorescence intensity of the phonon bands was obtained to characterize the NV center concentration. The relationship between NV center concentration and annealing temperature was analyzed. According to the variation of NV center concentration in different temperature ranges,three zones of suppression zone,diffusion zone and saturation zone were proposed. The Boltzmann model of NV center concentration and annealing temperature was obtained according to the experimental data,and the rate of change of NV center concentration near 780 °C is the fastest.
引文
[1]李勇,冯云光,金慧,等.高温高压下高氮浓度金刚石大单晶的合成与研究[J].人工晶体学报,2015,44(11):2984-2987.
    [2]刘晓晨,郭辉,安晓明,等. CVD法制备高质量金刚石单晶研究进展[J].人工晶体学报,2017,46(10):1897-1901.
    [3] Gruber A,Drbenstedt A,Tietz C,et al. Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers[J]. Science,1997,276(5321):2012-2014.
    [4] Grinolds M S,Hong S,Maletinsky P,et al. Nanoscale magnetic imaging of a single electron spin under ambient conditions[J]. Nature Physics,2013,9(4):215-219.
    [5] Neumann P,Jakobi I,Dolde F,et al. High-precision nanoscale temperature sensing using single defects in diamond[J]. Nano Letters,2013,13(6):2738-42.
    [6] Toyli D M,Cf D L C,Christle D J,et al. Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(21):8417-8421.
    [7] Maze J R,Stanwix P L,Hodges J S,et al. Nanoscale magnetic sensing with an individual electronic spin in diamond[J]. Nature,2008,455(7213):644-647.
    [8] Appel P,Ganzhorn M,Neu E,et al. Nanoscale microwave imaging with a single electron spin in diamond[J]. New Journal of Physics,2015,17(11):112001.
    [9] Dong M M,Hu Z Z,Liu Y,et al. A fiber based diamond RF B-field sensor and characterization of a small helical antenna[J]. Applied Physics Letters,2018,113(13).
    [10] Bo Y,Du G,Yue D,et al. Non-Invasive Imaging Method of Microwave Near Field Based on Solid State Quantum Sensing[J]. IEEE Transactions on Microwave Theory and Techniques,2018:1-8.
    [11] Horsley A,Appel P,Wolters J,et al. Microwave Device Characterization Using a Widefield Diamond Microscope[J]. Physical Review Applied,2018,10(4):044039.
    [12] Rittweger E,Han K Y,E Irvine S,et al. STED microscopy reveals crystal colour centres with nanometric resolution[J]. Nature Photonics,2015,3(3):144-147.
    [13] Dominik W,Patton B R,Heiko S,et al. Solid Immersion Facilitates Fluorescence Microscopy with Nanometer Resolution and Sub-Angstr?m Emitter Localization[J]. Advanced Materials,2012,24(44):OP309-OP313.
    [14] Silvia A C,Marie-Pierre A,Mondher B,et al. Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals[J]. Acs Nano,2013,7(12):10912-10919.
    [15] Dutt M V G,Childress L,Jiang L,et al. Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond[J]. Science,2007,316(5829):1312-1316.
    [16] Doherty M W,Manson N B,Delaney P,et al. The nitrogen-vacancy colour centre in diamond[J]. Physics Reports,2013,528(1):1-45.
    [17] Schirhagl R,Chang K,Loretz M,et al. Nitrogen-vacancy centers in diamond:nanoscale sensors for physics and biology[J]. Annual Review of Physical Chemistry,2014,65(65):83.
    [18] Song X,Wang G,Liu X,et al. Generation of nitrogen-vacancy color center in nanodiamonds by high temperature annealing[J]. Applied Physics Letters,2013,102(13):1201.
    [19] Zhang X M,Wang S Y,Shi Y B,et al. Quantitative analysis of spectral characteristics and concentration of ensembles of NV-centers in diamond[J]. Spectroscopy&Spectral Analysis,2017,112(11):2288-2295.
    [20]王芳,马宗敏,赵敏,等.金刚石集群NV色心的光谱特征及浓度定量分析[J].光谱学与光谱分析,2017,37(5):1477-1481.
    [21] Cahill D G,Ford W K,Goodson K E,et al. Nanoscale thermal transport[J]. Journal of Applied Physics,2003,93(2):793-818.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700