作物对干旱胁迫的响应过程与早期识别技术研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advance in the Response Process of Crops and Early Identification Technologies to Drought Stress
  • 作者:纪瑞鹏 ; 于文颖 ; 冯锐 ; 武晋雯 ; 张玉书 ; 王茜
  • 英文作者:JI Ruipeng;YU Wenying;FENG Rui;WU Jinwen;ZHANG Yushu;WANG Qian;Institute of Atmospheric Environment, China Meteorological Administration/Key Laboratory of Agrometeorological Disasters,Liaoning Province;Liaoning Province Public Meteorological Service Center;
  • 关键词:干旱胁迫 ; 响应过程 ; 早期识别 ; 预警
  • 英文关键词:drought stress;;response process;;early identification;;early warning
  • 中文刊名:ZHXU
  • 英文刊名:Journal of Catastrophology
  • 机构:中国气象局沈阳大气环境研究所/辽宁省农业气象灾害重点实验室;辽宁省气象服务中心;
  • 出版日期:2019-04-20
  • 出版单位:灾害学
  • 年:2019
  • 期:v.34;No.132
  • 基金:国家重点研发计划(2018YFD0300309);; 辽宁省科技厅重点研发计划指导计划项目(2017210001);; 中国气象局沈阳大气环境研究所东北区域合作项目(2018SYIAEHZ1);中国气象局沈阳大气环境研究所重点项目(2018SYIAEZD1)
  • 语种:中文;
  • 页:ZHXU201902029
  • 页数:8
  • CN:02
  • ISSN:61-1097/P
  • 分类号:155-162
摘要
作物干旱是干旱灾害的主要表现形式之一,严重影响着全球范围的粮食产量。为了积极应对干旱灾害影响,实施对作物干旱的早期精准预警是最行之有效的手段。该文综述了国内外已开展的作物对干旱胁迫的响应过程研究进展,包括干旱临近—发生阶段作物根系、气孔、叶水势等对早期干旱响应的敏感信号和指标;干旱发生—发展阶段中光合作用、蒸腾作用、叶绿素荧光参数、同化代谢与干物质累积等对干旱的响应过程;干旱发展—结束过程中的复水效应与干旱影响损失定量模拟评估技术等;梳理了农业干旱监测预警综合系统的发展和应用情况、农业干旱监测和预警指标种类和应用情况、农业干旱遥感监测方法以及作物干旱地面监测与识别技术等相关成果。探讨了未来通过开展作物对干旱应激响应的生理生态过程机制研究,进而准确捕捉到作物响应干旱胁迫的早期信号,为实现作物干旱的早期识别、提前预警和应对作物干旱灾害的不良影响提供依据。
        Crop drought is one of the major forms of drought disaster, seriously affecting the production of food crops in China or even in the world. In order to actively addressing the adverse effects of drought disaster, it is an effective means to implement accurate early warning of crop drought. This review summarizes the domestic and foreign researchers about the response processes of crops to drought stress, including the responses of crop roots, stomata, leaf water potential and other sensitive signals and indicators to early drought during the drought proximity-occurring stage; the response of photosynthesis, transpiration, chlorophyll fluorescence parameters, assimilation metabolism and accumulation of dry matter to drought during the drought occurring-onset stage; the advances on the re-watering effects of crops during the drought onset-remove stage and the quantitative simulation of the drought effects. It reviewed the development and application of agricultural drought monitoring and early warning comprehensive systems, the types and applications of agricultural drought monitoring and early warning indicators, agricultural drought remote sensing monitoring methods, and crop drought monitoring and identification technologies. Finally, future research prospects on the accurate capture of the warning signals of crop drought based on the mechanism of physiological and ecological processes responding to drought stress, which could provide a scientific basis for early identification, early warning of crop drought and tackling the adverse effects of drought disaster.
引文
[1] Ashok K M, Vijay P S. A review of drought concepts. Journal of Hydrology [J]. 2010, 391(1 /2): 202-216.
    [2] IPCC. Summary for policymakers. Managing the risks of extreme events and disasters to advance climate change adaptation[R].A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge, UK, and New York, NY, USA: Cambridge University Press, 2012: 1-19.
    [3] 周广胜, 何奇瑾, 汲玉河. 适应气候变化的国际行动和农业措施研究进展[J]. 应用气象学报, 2016, 27(5): 527-533.
    [4] 龚容, 高琼. 叶片结构的水力学特性对植物生理功能影响的研究进展[J]. 植物生态学报, 2015, 39(3): 300-308.
    [5] ZHANG J. Risk assessment of drought disaster in the maize-growing region of Songliao Plain, China [J]. Agriculture Ecosystems & Environment, 2004, 102(2): 133-153.
    [6] 张强, 韩兰英, 张立阳, 等. 论气候变暖背景下干旱和干旱灾害风险特征与管理策略[J]. 地球科学进展, 2014, 29(1): 80-91.
    [7] 张强, 姚玉璧, 李耀辉, 等. 中国西北地区干旱气象灾害监测预警与减灾技术研究进展及其展望[J]. 地球科学进展, 2015, 30(2): 196-213.
    [8] 李耀辉, 张良, 张虎强, 等. 基于CABLE陆面模式的干旱监测及其对典型干旱事件的效果检验[J]. 高原气象, 2015, 34(4): 1005-1018.
    [9] 吴杰峰, 陈兴伟, 高路. 水文干旱对气象干旱的响应及其临界条件[J]. 灾害学, 2017, 32(1): 199-204.
    [10] 温奇, 李苓苓, 马玉玲,等. 旱灾遥感预警监测评估技术——以2011年长江中下游旱灾为例[J]. 灾害学, 2013, 28(2): 51-54.
    [11] 张继权, 严登华, 王春乙, 等. 辽西北地区农业干旱灾害风险评价与风险区划研究[J]. 防灾减灾工程学报, 2012, 32(3): 300-306.
    [12] 刘建栋, 王馥棠, 于强, 等. 华北地区农业干旱预测模型及其应用研究[J]. 应用气象学报, 2003, 14(5):593-604.
    [13] Khakwani AA, Dennett MD, Khan N, et al. Stomatal and chlorophyll limitations of wheat cultivars subjected to water stress at booting and anthesis stages [J]. Pakistan Journal of Botany, 2013, 45(6): 1925-1932
    [14] 安玉艳, 梁宗锁. 植物应对干旱胁迫的阶段性策略[J]. 应用生态学报, 2012, 23(10): 2907-2915.
    [15] Skirycz A, Inzé D. More from less: plant growth under limited water [J]. Curr Opin Biotechnol, 2010, 21(2):197-203.
    [16] 陈家宙, 王石, 张丽丽, 等. 玉米对持续干旱的反应及红壤干旱阈值[J]. 中国农业科学, 2007, 40(3): 532-539.
    [17] Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production [J]. Nature, 2016, 529(7584):84-87.
    [18] 《气候变化国家评估报告》编写委员会. 气候变化国家评估报告[M]. 北京: 科学出版社, 2007.
    [19] 翟盘茂, 王萃萃, 李威. 极端降水事件变化的观测研究[J]. 气候变化研究进展, 2007, 3(3):144-148.
    [20] 山仑, 邓西平, 张岁岐. 生物节水研究现状及展望[J]. 中国科学基金, 2006, 20(2): 66-71.
    [21] 郭安红, 冯兆忠, 刘庚山, 等. 土壤干旱胁迫下非水力根信号调控夏玉米气体交换对大气环境的响应[J]. 生态学报, 2005, 25(12): 3161-3166.
    [22] Souza TCD, Magalh?es PC, Castro EMD, et al. The influence of ABA on water relation, photosynthesis parameters, and chlorophyll fluorescence under drought conditions in two maize hybrids with contrasting drought resistance [J]. Acta Physiologiae Plantarum, 2013, 35: 515-527.
    [23] Iwai S, Shimomura N, Nakashima A, Etoh T. New fava bean guard cell signaling mutant impaired in ABA-induced stomatal closure [J]. Plant Cell Physiol, 2003, 44: 909-913.
    [24] Ionenko IF, Dautova NR, Anisimov AV. Early changes of water diffusional transfer in maize roots under the influence of water stress [J]. Environmental and Experimental Botany. 2012, 76: 16-23.
    [25] 余林辉, 蔡晓腾, 徐萍, 等. 植物抗旱节水: 从实验室到田间[J]. 中国科学(生命科学), 2017, 47(1): 145-154.
    [26] 高春娟, 夏晓剑, 师恺, 等. 植物气孔对全球环境变化的响应及调控防御机制[J]. 植物生理学报, 2012, 48(1): 19-28.
    [27] Bonyor J S. Plant productivity and environment [J]. Science, 1982, 218(4571): 443-448.
    [28] Mutava RN, Prasad PVV, Tuinstra MR, et al. Characterization of sorghum genotypes for traits related to drought tolerance [J]. Field Crop Research, 2011, 123: 10-18.
    [29] Muhammad A, Riaz A, SMA Basra, et al. Response of maize (Zea mays L.) hybrids to drought stress at early seedling stage [J]. Research on Crops, 2014, 15(1): 55-61.
    [30] Atsushi M, Tsuneo K. Diurnal and seasonal variation in bulk stomatal conductance of the rice canopy and its dependence on developmental stage [J]. Agricultural and Forest Meteorology, 2008, 148: 1161-1173.
    [31] Gonzales L, Gonzales-Vilar M. Determination of relative water content [C]// Reigosa MJ, ed. Handbook of Plant Ecophysiology Techniques, Kluwer Academic Publishers, Dordrecht, 2001: 207-212.
    [32] Sanchez-Rodriguez E, Rubio-Wilhelmi M, Cervilla LM, et al. Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plant s[J]. Plant Science, 2010, 178(1):30-40.
    [33] Ghassemi-Golezani K, Bakhshy J, Zehtab-Salmasi S, et al. Changes in leaf characteristics and grain yield of soybean (Glycine max L.) in response to shading and water stress [J]. International Journal of Biosciences, 2013, 3(2):71-79.
    [34] 梁宗锁, 康绍忠, 高俊凤. 植物对土壤干旱信号的感知、传递及其水分利用的控制[J]. 干旱地区农业研究, 1999, 17(2): 72-78.
    [35] 张丛志, 张佳宝, 赵炳梓, 等. 作物对水分胁迫的响应及水分利用效率的研究进展[J]. 节水灌溉, 2007(5): 1-6.
    [36] Gouesnard B, Zanetto A, Welcker C. Identification of adaptation traits to drought in collections of maize landraces from southern Europe and temperate regions [J]. Euphytica, 2016, 209(3):565-584.
    [37] Tardieu F, Granier C, Muller B. Water deficit and growth. Co-ordinating processes without an orchestrator[J]. Current Opinion in Plant Biology, 2011, 14(3):283-289.
    [38] Welcker C, Sadok W, Dignat G, et al. A common genetic determinism for sensitivities to soil water deficit and evaporative demand: meta-analysis of quantitative trait Loci and introgression lines of maize[J]. Plant Physiology, 2011, 157(2):718-729.
    [39] 宋凤斌, 戴俊英. 玉米茎叶和根系的生长对干旱胁迫的反应和适应性[J]. 干旱区研究, 2005, 22(2): 256-258.
    [40] 赵鸿, 王润元, 尚艳, 等. 粮食作物对高温干旱胁迫的响应及其阈值研究进展与展望[J]. 干旱气象, 2016, 34(1): 1-12.
    [41] ZHAO W, SUN Y, Kjelgren R, et al. Response of stomatal density and bound gas exchange in leaves of maize to soil water deficit[J]. Acta Physiol Plant, 2015, 37: 1704.
    [42] Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation [J]. New Phytologist, 1993, 125: 27-58.
    [43] Bohnert H J, Jensen R G. Strategies for engineering water-stress tolerance in plants [J]. Trends in Biotechnology, 1996, 14: 89-97.
    [44] 刘祖贵, 陈金平, 段爱旺,等. 不同土壤水分处理对夏玉米叶片光合等生理特性的影响[J]. 干旱地区农业研究, 2006, 24(1):90-95.
    [45] 刘帆, 申双和, 李永秀,等. 不同生育期水分胁迫对玉米光合特性的影响[J]. 气象科学, 2013, 33(4):378-383.
    [46] 于文颖, 纪瑞鹏, 冯锐,等. 不同生育期玉米叶片光合特性及水分利用效率对水分胁迫的响应[J]. 生态学报, 2015, 35(9):2902-2909.
    [47] Jezik M, Blazenec M, Letts MG, et al. Assessing seasonal drought stress response in Norway spruce (Picea abies (L.) Karst.) by monitoring stem circumference and sap flow [J]. Ecohydrology, 2014, 8(3): 378-386.
    [48] 林同保, 孟战赢, 曲奕威. 不同土壤水分条件下夏玉米蒸发蒸腾特征研究[J]. 干旱地区农业研究, 2008, 26(5): 22-26.
    [49] Allen S J, Grime V L. Measurements of transpiration from savannah shrubs using sap flow gauges [J]. Agricultural and Forest Meteorology, 1995, 75: 23-41.
    [50] Pamela L N, Edward P G, Thompson T L. Comparison of transpiration rates among saltcedar, cottonwood and willow trees by sap flow and canopy temperature methods [J]. Agricultural and Forest Meteorology, 2003, 11(6): 73-89.
    [51] Ghassemi-Golezani K, Bakhshy J, Zehtab-Salmasi S, et al. Changes in leaf characteristics and grain yield of soybean (Glycine max L.) in response to shading and water stress [J]. International Journal of Biosciences, 2013, 3(2):71-79.
    [52] 杨涛, 梁宗锁, 薛吉全,等. 土壤干旱不同玉米品种水分利用效率差异的生理学原因[J]. 干旱地区农业研究, 2002, 20(2): 68-71.
    [53] Samuel G K A, Harry O L, Thierry B. Patterns of root growth and water uptake of a maize-cowpea mixture grown under greenhouse conditions [J]. Plant and Soil, 2001, 235: 85-94.
    [54] Adel T. Z, Shinichi T, Hossein D, et al. A bowen ratio technique for partitioning energy fluxes between maize transpiration and soil surface evaporation [J]. Agronomy Journal, 2008, 100(4): 988-996.
    [55] 赵娜娜, 刘钰, 蔡甲冰. 夏玉米作物系数计算与耗水量研究[J]. 水利学报, 2010, 41(8): 953-959.
    [56] 郭映, 董阳, 周振方, 等. 半干旱区玉米茎流规律及其对气象因子的响应[J]. 干旱区资源与环境, 2014, 28(9): 94-99.
    [57] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis [J]. Annual Review of Plant Physiology, 1982, (33): 317-345.
    [58] Flexas J, Medrano H. Energy dissipation in C3 plants under drought [J]. Function Plant Biology, 2002, 29: 1209-1215.
    [59] Baker NR, Rosenqvist E. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities [J]. Journal of Experimental Botany, 2004, 55: 1607-1621.
    [60] 童小芹, 王淑智, 夏咏, 等. 应用叶绿素荧光技术快速预警乌鲁木齐典型农作物干旱胁迫[J]. 干旱区研究, 2013, 30(5): 860-866.
    [61] 平晓燕, 周广胜, 孙敬松. 植物光合产物分配及其影响因子研究进展[J]. 植物生态学报, 2010, 34(1): 100-111.
    [62] 曲涛, 南志标. 作物和牧草对干旱胁迫的响应及激励研究进展[J]. 草业学报, 2008, 17(2): 126-135.
    [63] 李耕, 高辉远, 赵斌, 等. 灌浆期干旱胁迫对玉米叶片光系统活性的影响[J]. 作物学报, 2009, 35(10): 1916-1922.
    [64] 张淑勇, 国静, 刘炜, 等. 玉米苗期叶片主要生理生化指标对土壤水分的响应[J]. 玉米科学, 2011, 19(5): 68-77.
    [65] Nikolaeva MK, Maevskaya SN, Voronin PY. Activities of antioxidant and osmoprotective systems and photosynthetic gas exchang in maize seedlings under drought conditions [J]. Russian Journal of Plant Physiology, 2015, 62(3): 314-321.
    [66] 孟兆江, 段爱旺, 刘祖贵, 等. 根据植株茎直径变化诊断作物水分状况研究进展[J]. 农业工程学报, 2005, 21(2): 30-33.
    [67] 李会, 刘钰, 蔡甲冰, 毛晓敏,等. 夏玉米茎流速率和茎直径变化规律及其影响因素[J].农业工程学报, 2011, 27(10):187-191.
    [68] 郑盛华, 严昌荣. 水分胁迫对玉米苗期生理和形态特性的影响[J]. 生态学报, 2006, 26(4): 1138-1143.
    [69] 纪瑞鹏, 张玉书, 姜丽霞, 等. 气候变化对东北地区玉米生产的影响[J]. 地理研究, 2012, 31(2): 290-298.
    [70] 张玉书, 米娜, 陈鹏狮,等. 土壤水分胁迫对玉米生长发育的影响研究进展[J]. 中国农学通报, 2012, 28(3):1-7.
    [71] 米娜, 张玉书, 蔡福, 等. 土壤干旱胁迫对作物影响的模拟研究进展[J]. 生态学杂志, 2016, 35(9): 2519-2526.
    [72] 张丹, 任洁, 王慧梅. 干旱胁迫及复水对红松针叶和树皮绿色组织光合特性及抗氧化系统的影响[J]. 生态学杂志, 2016, 35(10): 2606-2614.
    [73] Xu Z, Zhou G, Shimizu H. Plant response to drought and rewatering [J]. Plant Signaling & Behavior, 2010, 5(6):649-654.
    [74] Acevedo E, Hsiao T C, Henderson D W. Immediate and subsequent growth responses of maize leaves to changes in water status [J]. Plant Physiology, 1971, 48(5): 631-6.
    [75] 赵丽英, 邓西平, 山仑. 水分亏缺下作物补偿效应类型及机制研究概述[J]. 应用生态学报, 2004, 15(3):523-526.
    [76] 郭相平, 刘展鹏, 王青梅,等. 采用PEG模拟干旱胁迫及复水玉米光合补偿效应[J]. 河海大学学报(自然科学版), 2007, 35(3): 286-290.
    [77] 于文颖, 纪瑞鹏, 冯锐,等. 干旱胁迫对玉米叶片光响应及叶绿素荧光特性的影响[J]. 干旱区资源与环境, 2016, 30(10): 82-87.
    [78] 杨霏云, 高学浩, 钟琦,等. 作物模型、遥感和地理信息系统在国外农业气象服务中的应用进展及启示[J]. 气象科技进展, 2012, 2(3):34-38.
    [79] Timlin D, Bunce J, Fleisher D, et al. Simulation of the effects of limited water on photosynthesis and transpiration in field crops: can we advance our modeling approaches?[C]// International Symposium on Computer. 2008: 1-11.
    [80] Craufurd P Q, Vadez V, Jagadish SVK, et al. Crop science experiments designed to inform crop modeling[J]. Agricultural and Forest Meteorology, 2013, 170: 8-18.
    [81] 张晓煜, 杨晓光, 李茂松, 等. 农业干旱预警研究现状及发展趋势[J]. 干旱区资源与环境, 2011, 25(11): 18-22.
    [82] 陈德亮. 气候变化背景下中国重大农业气象灾害预测预警技术研究[J]. 科技导报, 2012, 30(19): 3-3.
    [83] Hobbins M, Wood A, Mcevoy D, et al. The Evaporative Demand Drought Index. Part I: Linking Drought Evolution to Variations in Evaporative Demand [J]. Journal of Hydrometeorology, 2016, 17(6): 1745-1761.
    [84] Mcevoy D J, Huntington J L, Hobbins M T, et al. The evaporative demand drought index. Part II: CONUS-Wide assessment against common drought indicators[J]. Journal of Hydrometeorology, 2016, 17(6): 1763-1779.
    [85] 李柏贞, 周广胜. 干旱指标研究进展[J]. 生态学报, 2014, 34(5): 1043-1052.
    [86] 石耀辉, 周广胜, 蒋延玲, 等. 贝加尔针茅响应降水变化敏感指标及阈值研究[J]. 生态学报, 2017, 37(8):2620-2630.
    [87] Smakhtin V U, Hughes D A. Review, automated estimation and analyses of drought indices in South Asia [J]. IWMI Working Paper N 83-Drought Series Paper N 1, Colombo, Sri Lanka, 2004.
    [88] ZHANG Q, ZHANG J, WANG C, et al. Risk early warning of maize drought disaster in Northwestern Liaoning Province, China [J]. Nat Hazards, 2014, 72: 701-710.
    [89] Eslamian S, Ostad-Ali-Askari K, Singh VP, et al. A review of drought indices [J]. International Journal of Constructive Research in Civil Engineering, 2017, 3(4): 48-66.
    [90] Vicenteserrano S M, Beguería S, Lópezmoreno J I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index[J]. Journal of Climate, 2010, 23(7): 1696-1718.
    [91] 孙灏,陈云浩,孙洪泉. 典型农业干旱遥感监测指数的比较及分类体系[J]. 农业工程学报,2012, 28(14): 147-154.
    [92] 黄友昕,刘修国,沈永林,等. 农业干旱遥感监测指标及其适应性评价方法研究进展[J]. 农业工程学报,2015, 31(16): 186-195.
    [93] Chaves MM, Pereira JS, Maroco J. Understanding plant response to drought from genes to the whole plant [J]. Functional Plant Biology, 2003, 89: 239-264.
    [94] Jenks M A, Hasegawa P M. Chapter 2. Plant cuticle function as a barrier to water Loss [M]// Plant Abiotic Stress. Blackwell Publishing Ltd, 2007:14-36.
    [95] 杨帆, 苗灵凤, 胥晓, 等. 植物对干旱胁迫的响应研究进展[J]. 应用与环境生物学报, 2007, 13(4): 586-591.
    [96] Lawlor D W. Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities [J]. Journal of Experimental Botany, 2013, 64(1):83-108.
    [97] Gilbert M E, Medina V. Drought adaptation mechanisms should guide experimental design [J]. Trends in Plant Science, 2016, 21(8):639-647.
    [98] LI X, Wilkinson S, SHEN J, et al. Stomatal and growth responses to hydraulic and chemical changes induced by progressive soil drying [J]. Journal of Experimental Botany, 2017, 8: 1774.
    [99] Grzesiak MT, Waligórski P, Janowiak F, et al. The relations between drought susceptibility index based on grain yield (DSIGY) and key physiological seedling traits in maize and triticale genotypes [J]. Acta Physiologiae Plantarum, 2013, 35: 549-565.
    [100] 张强, 张良, 崔显成, 等. 干旱监测与评价技术的发展及其科学挑战[J]. 地球科学进展, 2011, 26(7): 763-778.
    [101] Lacape M J, Wery J, Annerose D J M. Relationships between plant and soil water status in five field-grown cotton (Gossypium hirsutum L.) cultivars [J]. Field Crops Research, 1998, 57: 29-43.
    [102] Peiguo G, Michael B, Stefania G, et al. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage [J]. Journal of Experimental Botany, 2009, 60(12): 3531-3544.
    [103] 郭建平. 农业气象灾害监测预测技术研究进展[J]. 应用气象学报, 2016,37(5): 620-630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700