提高酵母乙酸胁迫耐性的方法概述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:An Overview of The Methods for Improving the Acetic Acid Stress Tolerance of Yeast
  • 作者:林贝 ; 周莉莉 ; 毕春燕
  • 英文作者:Lin Bei;Zhou Lili;Bi Chunyan;School of Engineering Yanching Institute of Technology;
  • 关键词:木质纤维素 ; 乙酸 ; 酵母 ; 耐受性
  • 英文关键词:lignocellulose;;acetic acid;;yeast;;tolerance
  • 中文刊名:GDHG
  • 英文刊名:Guangdong Chemical Industry
  • 机构:燕京理工学院工学院;
  • 出版日期:2018-08-27 09:13
  • 出版单位:广东化工
  • 年:2018
  • 期:v.45;No.376
  • 语种:中文;
  • 页:GDHG201814067
  • 页数:2
  • CN:14
  • ISSN:44-1238/TQ
  • 分类号:158+167
摘要
利用木质纤维素制备燃料乙醇新能源有利于人类社会的可持续发展,具有深远的社会效益和经济效益。预处理是利用木质纤维素类生物质的首要环节,在此过程中会产生一些抑制剂,其中乙酸是最主要的抑制剂之一,对酵母的生长和发酵产乙醇产生抑制作用。目前,可通过紫外诱变、驯化、代谢工程等菌种选育方法以及发酵过程中的控制等方式提高酵母在发酵过程中对乙酸的胁迫耐受性。
        Ethanol production from lignocellulose is beneficial to the sustainable development of human society and has profound social and economic benefits. Pretreatment is the first step of using lignocellulosic biomass, in which some inhibitors are generated, acetic acid is one of the most inhibitors, which inhibiting microbial growth and subsequent fermentation.At present, mutagenic breeding, adaption, metabolic engineering, and also fermentation control to reduce the effects of the acetic acid.
引文
[1]Zabed H,Sahu JN,Suely A,et al.Bioethanol production from renewable sources:current perspectives and technological progress[J].Renewable and Sustainable Energy Reviews,2017,71:475-501.
    [2]Rajeev Ravindran,Amit Kumar Jaiswal.Comprehensive review on pre-treatment strategy for lignocellulosic food industry waste:Challenges and opportunities[J].Bioresource Technology,2016,199:92-102.
    [3]Palmqvist E,Hahn-H?gerdal B.Fermentation of lignocellulosic hydrolysates.II:Inhibitors and mechanisms of inhibition[J].Bioresource Technology,2000,74:25-33.
    [4]陈亮,徐龙龙,闫德冉,等.利用基因组DNA诱变技术选育高抑制物耐受性工业酵母菌[J].林产化学与工业,2015,35(6):108-112.
    [5]Kumari R,Pramanik K.Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production[J].Journal of Bioscience and Bioengineering,2012,114(6):622-629.
    [6]相瑞娟.木质纤维素水解液抑制物高抗性酵母的选育[D].大连:大连理工大学,2016.
    [7]Almario MP,Reyes LH,Kao KC.Evolutionary Engineering of Saccharomyces cerevisiae for Enhanced Tolerance to Hydrolysates of Lignocellulosic Biomass[J].Biotechnology and Bioengineering,2013,110(10):2616-2623.
    [8]Zhang M M,ZHAO X Q,CHENG C,et al.Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1[J].Biotechnol J,2015,10(12):1903-1911.
    [9]张明明,万青青,张克俞,等.过表达分支酸歧化酶编码基因ARO7对酿酒酵母抑制物耐受性的影响[J].应用与环境生物学报,2016,22(2):201-205.
    [10]方青,张明明,陈洪奇,等.过表达谷氧还蛋白基因GRX5提高酿酒酵母乙酸耐性[J].化工学报,2015,66(4):1434-1439.
    [11]方青,万青青,熊亮,等.过表达MRP8提高酿酒酵母乙酸耐性及乙醇发酵效率[J].生物加工过程,2017,15(5):80-85.
    [12]张黎杰.酿酒酵母JJJ1基因敲除提高乙酸耐性和纤维乙醇发酵性能[D].杭州:浙江大学,2016.
    [13]Zhang M,ZHANG K,MEHMOOD M A,et al.Deletion of acetate transporter gene ADY2 improved tolerance of Saccharomyces cerevisiae against multiple stresses and enhanced ethanol production in the presence of acetic acid[J].Bioresour Technol,2017,245:1461-1468.
    [14]李倩倩,王燕,诸葛斌,等.产甘油假丝酵母抗逆转录因子的过表达对酿酒酵母耐酸胁迫性的影响[J].应用与环境生物学报,2017,23(6):1006-1010.
    [15]杜昭励,程艳飞,朱卉,等.絮凝基因FLO1及FLO1c高表达提高工业酿酒酵母乙酸耐受性及发酵性能[J].生物工程学报,2015,31(2):231-241.
    [16]徐桂红,赵心清,李宁,等.锌离子提高絮凝酵母乙酸胁迫耐受性[J].化工学报,2012,63(6):1823-1829.
    [17]程诚,赵心清,白凤武,等.细胞絮凝及硫酸锌对酿酒酵母乙酸胁迫耐性的影响[J].应用与环境生物学报,2016,22(1):0116-0119.
    [18]郝学密,杜斌,刘黎阳,等.ORP对酿酒酵母在木质纤维素水解液抑制物中发酵的影响[J].化工学报,2015,66(3):1066-1071.
    [19]Zhu JQ,Qin L,Li WC,et al.Simultaneous saccharification and co-fermentation of dry diluted acid pretreated corn stover at high dry matter loading:Overcoming the inhibitors by non-tolerant yeast[J].Bioresour Technol,2015,198:39-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700