无患子幼苗的生长和光合特性对重庆低山丘陵区不同生境的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of seedling growth and photosynthetic characteristics of Sapindus mukorossi to different habitats in low mountainous upland region of Chongqing, southwestern China
  • 作者:乐佳兴 ; 田秋玲 ; 吴焦焦 ; 高岚 ; 张文 ; 刘芸
  • 英文作者:Yue Jiaxing;Tian Qiuling;Wu Jiaojiao;Gao Lan;Zhang Wen;Liu Yun;College of Resources and Environment, Southwest University;
  • 关键词:无患子 ; 光合日变化 ; 立地条件 ; 环境因子 ; 通径分析 ; 决策系数
  • 英文关键词:Sapindus mukorossi;;diurnal variation of photosynthesis;;site condition;;environmental factor;;path coefficient analysis;;decision coefficient
  • 中文刊名:BJLY
  • 英文刊名:Journal of Beijing Forestry University
  • 机构:西南大学资源环境学院;
  • 出版日期:2019-06-15
  • 出版单位:北京林业大学学报
  • 年:2019
  • 期:v.41
  • 基金:中央财政林业科技推广示范项目(渝林科推【2016-04号】);; 国家自然科学基金项目(31370602)
  • 语种:中文;
  • 页:BJLY201906008
  • 页数:11
  • CN:06
  • ISSN:11-1932/S
  • 分类号:79-89
摘要
【目的】本文探究了重庆低山丘陵地区不同生境无患子生长、光合特征及其影响因素,为西南地区无患子苗木培育及集约种植提供参考。【方法】在无患子旺盛生长的夏季测定低山、高丘和低丘立地无患子的生长指标、光合响应曲线及日变化特征,并采用通径分析方式分析各环境因子对无患子净光合速率(P_n)的直接和间接影响。【结果】(1)3种生境无患子P_n与蒸腾速率(T_r)日变化均呈双峰曲线变化,存在明显的"午休"。低丘无患子日均P_n和T_r均最小,高丘与低山日均P_n相差不大;光能利用效率(LUE)与水分利用效率(WUE)日均值大小为低丘>高丘>低山。(2)低山、高丘和低丘的无患子株高较移栽前分别增长1.16、1.39和0.63倍,地径增加2.41、1.97和0.75倍;叶片干质量大小为低山>高丘>低丘;根、茎总干质量大小为高丘>低山>低丘。(3)光合有效辐射(PAR)、大气CO_2浓度(C_a)、温度(T_a)和湿度(RH)等各环境因子决策系数由大到小分别为低山:R_(PAR)~2>R_(T_a)~2>R_(C_a)~2>R_(RH)~2,高丘:RPAR2>R_(T_a)~2>R_(C_a)~2>R_(RH)~2,低丘:R_(PAR)~2>R_(C_a)~2>R_(RH)~2>R_(T_a)~2。(4)叶绿素a、b含量由大到小为低丘>高丘>低山;类胡萝卜素含量大小为低山>高丘>低丘。(5)拟合光合响应曲线得出无患子最大净光合速率(P_(nmax))大小为低山>高丘>低丘;叶片表观量子效率(AQY)低山最小,高、低丘陵间无显著差异。【结论】无患子在低山立地条件下能长期获取比高丘、低丘更强的光照,长期适应使其对弱光利用能力低于另两个立地。3种立地中,PAR皆为P_n的主要驱动因子,低山和高丘立地中RH为P_n最大限制因素;低丘立地P_n主要限制因子为T_a,其夏季高温限制了无患子的光合潜能,导致其日均P_n在3种立地中最小,植株生长最慢。
        [Objective] In this paper, the growth, photosynthetic characteristics and the main environmental factors of Sapindus mukorossi under different habitats at low mountainous upland region of Chongqing were explored in order to provide a reference for seedling cultivation and intensive planting of Sapindus mukorossi in southwestern China. [Method] The growth indexes, photosynthetic response curves and diurnal variation characteristics of the three site conditions including low mountains, high hills and low hills were measured in summer. Besides, path analysis method was adopted to figure out the direct and indirect effects of environmental factors on net photosynthetic rate(P_n). [Result](1) The diurnal variation of P_n and transpiration rate(T_r) in the three kinds of site showed a bimodal curve, revealing a distinct "noon depression". The average daily P_n and T_r of Sapindus mukorossi in low hills were the smallest, and the difference between high hills and low mountains was not obvious. The order of daily average of light utilization efficiency(LUE) and water use efficiency(WUE) was both showed as low hills > high hills > low mountains.(2) Compared with before transplanting, the height of Sapindus mukorossi in low mountains,high hills and low hills increased by 1.16, 1.39 and 0.63 times, respectively, and the ground diameter increased by 2.41, 1.97 and 0.75 times, respectively. The dry mass of leaves obeyed the order of low mountains > high hills > low hills. And the total dry mass of roots and stems obeyed the order of high hills >low mountains > low hills.(3) The decision coefficient of the environmental factors including photosynthetically active radiation(PAR), atmospheric CO_2 concentration(C_a), air temperature(T_a) and air relative humidity(RH) in the low mountains followed the order of R_(PAR)~2 > R_(T_a)~2 > R_(C_a)~2 > R_(RH)~2, high hills followed R_(PAR)~2 > R_(T_a)~2 > R_(C_a)~2 > R_(RH)~2, low hills followed R_(PAR)~2 > R_(C_a)~2 > R_(RH)~2 > R_(T_a)~2.(4) Chlorophyll-a and chlorophyll-b content of Sapindus mukorossi obeyed the order of low hills > high hills > low mountains, the content of carotenoids obeyed the order of low mountains > high hills > low hills.(5) The photosynthetic response curves were fitted to obtain the maximum net photosynthetic rate(P_(nmax)) of Sapindus mukorossi,and the result followed the order of low mountains > high hills > low hills. The apparent quantum yield(AQY) of leaves in low mountains was the smallest, while there was insignificant difference between high and low hills. [Conclusion] In low mountains, Sapindus mukorossi can obtain more light than high hills and low hills, and the ability of using low light was lower than under the other two site conditions because of long term adaptation. PAR is the main driving factor of P_n in three kinds of site conditions. RH is the biggest limiting factor of P_n under the conditions of low mountains and high hills. The main limiting factor of P_n in low hills is Ta. The high temperature in summer of the low hill site limited photosynthesis of Sapindus mukorossi, resulting in the average daily P_n and growth of plants was the slowest in the three kinds of site conditions.
引文
[1]孙操稳,贾黎明,叶红莲,等.无患子果实经济性状地理变异评价及与脂肪酸成分相关性[J].北京林业大学学报,2016,38(12):73-83.Sun C W,Jia L M,Ye H L,et al.Geographic variation evaluating and correlation with fatty acid composition of economic characters of Sapindus spp.fruits[J].Journal of Beijing Forestry University,2016,38(12):73-83.
    [2]高媛,贾黎明,高世轮,等.无患子树体合理光环境及高光效调控[J].林业科学,2016,52(11):29-38.Gao Y,Jia L M,Gao S L,et al.Reasonable canopy light intensity and high light efficiency regulation of Sapindus mukorossi[J].Scientia Silvae Sinicae,2016,52(11):29-38.
    [3]罗艳,刘梅.开发木本油料植物作为生物柴油原料的研究[J].中国生物工程杂志,2007,27(7):68-74.Luo Y,Liu M.Oil-bearing trees as a source for biodiesel[J].China Biotechnology,2007,27(7):68-74.
    [4]贾黎明,孙操稳.生物柴油树种无患子研究进展[J].中国农业大学学报,2012,17(6):191-196.Jia L M,Sun C W.Research progress of biodiesel tree Sapindus mukorossi[J].Journal of China Agricultural University,2012,17(6):191-196.
    [5]Ghagi R,Satpute S K,Chopade B A,et al.Study of functional properties of Sapindus mukorossi as a potential bio-surfactant[J].Indian Journal of Science and Technology,2011,4(5):231-233.
    [6]Liu M,Chen Y L,Kuo Y H,et al.Aqueous extract of Sapindus mukorossi induced cell death of A549 cells and exhibited antitumor property in vivo[J/OL].Scientific Reports,2018,8(2018-03-19)[2018-10-21].https://doi.org/10.1038/S41598-018-23096-w.
    [7]Shah M,Parveen Z,Khan M R.Evaluation of antioxidant,antiinflammatory,analgesic and antipyretic activities of the stem bark of Sapindus mukorossi[J/OL].BMC Complementary&Alternative Medicine,2017,17(2017-12-08)[2018-09-20].https://doi.org/10.1186/S12906-017-2042.
    [8]国家林业局.全国林业生物质能源发展规划(2011-2020年)[R/OL].(2013-05-28)[2018-03-20].http://www.forestry.gov.cn/.State Forestry Administration.The planning of national forestry biomass energy development(2011-2020)[R/OL].(2013-05-28)[2018-03-20].http://www.forestry.gov.cn/.
    [9]蔡金术,王中炎.猕猴桃树势对果实大小与品质的影响[J].湖南农业科学,2009(12):119-121,130.Cai J S,Wang Z Y.Effects of tree vigour on fruit size and quality of kiwifruit[J].Hunan Agricultural Sciences,2009(12):119-121,130.
    [10]冯大兰,黄小辉,刘芸,等.4种木本植物在石漠化地区的生长状况及光合特性[J].北京林业大学学报,2015,37(5):62-69.Feng D L,Huang X H,Liu Y,et al.Growth andphotosynthetic characteristics of four woody plants in the rocky and desertified area[J].Journal of Beijing Forestry University,2015,37(5):62-69.
    [11]石松利,王迎春,周红兵,等.濒危种四合木与其近缘种霸王水分关系参数和光合特性的比较[J].生态学报,2012,32(4):1163-1173.Shi S L,Wang Y C,Zhou H B,et al.Comparative analysis of water related parameters and photosynthetic characteristics in the endangered plant Tetraena mongolica Maxim.and the closely related Zygophyllum xanthoxylon(Bunge)Maxim[J].Acta Ecologica Sinica,2012,32(4):1163-1173.
    [12]高岚,邬静淳,熊兴政,等.引种植物水桦在三峡库区消落带的种子萌发及生长特性[J].重庆师范大学学报(自然科学版),2017,34(4):40-47.Gao L,Wu J C,Xiong X Z,et al.The seed germination and growth characteristics of introduced plant Betula nigrain hydrofluctuation belt of Three Gorges Reservoir Area[J].Journal of Chongqing Normal University(Natural Science),2017,34(4):40-47.
    [13]郭连金,杜佳朋,吴艳萍,等.香果树实生苗的光合特性及其与环境因子的关系[J].应用生态学报,2017,28(5):1473-1481.Guo L J,Du J P,Wu Y P,et al.Photosynthetic characteristics of Emmenopterys henryi seedlings and their relationships with environmental factors[J].Chinese Journal of Applied Ecology,2017,28(5):1473-1481.
    [14]韩忠明,王云贺,林红梅,等.吉林不同生境防风夏季光合特性[J].生态学报,2014,34(17):4874-4881.Han Z M,Wang Y H,Lin H M,et al.Photosynthetic characteristics of Saposhnikovia divaricata in different habitats in summer[J].Acta Ecologica Sinica,2014,34(17):4874-4881.
    [15]马加芳,李贵祥,柴勇,等.瑞丽山龙眼幼苗光合特性研究[J].热带作物学报,2017,38(4):640-645.Ma J F,Li G X,Chai Y,et al.Photosynthetic characteristics of Helicia shweliensis W.W.Smith seedlings[J].Chinese Journal of Tropical Crops,2017,38(4):640-645.
    [16]马新,董鹏,姜继元,等.文冠果光合生理日变化及其与生理生态因子的相关性研究[J].西南农业学报,2018,31(6):1267-1271.Ma X,Dong P,Jiang J Y,et al.Diurnal variation of photosynthesis rate of Xanthoceras sorbifolia and correlation witheco-physiological factors[J].Southwest China Journal of Agricultural Sciences,2018,31(6):1267-1271.
    [17]唐晓萍,陈志军,何泽能.1961-2010年重庆地区气温和总辐射变化分析[J].高原山地气象研究,2013,33(3):43-47.Tang X P,Chen Z J,He Z N,et al.Analysis of temperature and total radiation trend in Chongqing area during 1961-2010[J].Plateau and Mountain Meteorology Research,2013,33(3):43-47.
    [18]周梦甜,李军,何君,等.起伏地形对气温时空分布的影响:重庆市为例[J].水土保持通报,2016,36(5):346-351.Zhou M T,Li J,He J,et al.Effects of rugged terrain on spatial and temporal distribution of temperature:taking Chongqing City as a case study[J].Bulletin of Soil and Water Conservation,2016,36(5):346-351.
    [19]林文荣.无患子开发利用前景[J].林业勘察设计,2007(2):118-120.Lin W R.Prospect of exploitation and utilization of Sapindus mukorossi Gaerth[J].Forest Investigation Design,2007(2):118-120.
    [20]陈佳,陈凌艳,何天友,等.无患子组织培养与快速繁殖技术研究[J].福建农业学报,2014,29(3):239-242.Chen J,Chen L Y,He T Y,et al.Research on tissue culture and fast propagation technology of Sapindus mukurossi[J].Fujian Journal of Agricultural Sciences,2014,29(3):239-242.
    [21]秦愉,庞丽蓉,符少团,等.无患子种仁油的提取工艺优化及脂肪酸组成分析[J].中国油脂,2018,43(1):13-15.Qin Y,Pang L R,Fu S T,et al.Optimization of extraction of Sapindus mulorossi Gaertn.kernel oil and its fatty acid composition[J].China Oils and Fats,2018,43(1):13-15.
    [22]刁松锋,邵文豪,董汝湘,等.无患子光合生理日变化及其与生理生态因子的关系[J].西北植物学报,2014,34(4):828-834.Diao S F,Shao W H,Dong R X,et al.Diurnal variation of photosynthesis and relationship with the eco-physiological factors of Sapindus mukorossi[J].Acta Botanica Boreali-Occidentalia Sinica,2014,34(4):828-834.
    [23]林达,王松杰,许霞玲,等.栾树和无患子净光合速率对光强和CO2浓度的响应[J].黑龙江农业科学,2012(10):89-93.Lin D,Wang S J,Xu X L,et al.Response of net photosynthetic rate to light intensity and CO2 concentration of Koelreuteria paniculata Laxm.and Sapindus mukorossi Gaerth[J].Heilongjiang Agricultural Sciences,2012(10):89-93.
    [24]孟德悦,吴海勇,刘光斌,等.不同种源无患子光合与蒸腾速率差异分析[J].经济林研究,2013,31(2):48-53.Meng D Y,Wu H Y,Liu G B,et al.Variance analysis on net photosynthetic rate and transpiration rate of Spindus mukorossi from different provenances[J].Nonwood Forest Research,2013,31(2):48-53.
    [25]廖兴国,言议超,郭圣茂.无患子夏季光合速率日变化研究[J].绿色科技,2016(15):61-62.Liao X G,Yan Y C,Guo S M.Study on diurnal variation of photosynthetic rate of Sapindus mukorossi in summer[J].Journal of Green Science and Technology,2016(15):61-62.
    [26]高玄彧.地貌基本形态的主客分类法[J].山地学报,2004,22(3):261-266.Gao X Y.The subjective and objective classification of geomorphologic forms[J].Journal of Mountain Science,2004,22(3):261-266.
    [27]吕勇.杉木人工林生长率模型的研究[J].林业科学,2002,38(1):146-149.LüY.Study on the growth percentage models of individual tree in chinese fir plantation[J].Scientia Silvae Sinicae,2002,38(1):146-149.
    [28]Farquhar G D,Von C S,Berry J A.A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J].Planta,1980,149(1):78-90.
    [29]Berry J A,Downton W J S.Environmental regulation of photosynthesis[M]//Govind J.Photosynthesis:Vol.Ⅱ.NewYork:Academia Press,1982:263-343.
    [30]李合生.现代植物生理学[M].北京:高等教育出版社,2002.Li H S.Modern plant physiology[M].Beijing:Higher Education Press,2002.
    [31]赵宏瑾,朱仲元,王喜喜,等.不同生育期榆树净光合速率对生态因子和生理因子的响应[J].生态学报,2016,36(6):1645-1651.Zhao H J,Zhu Z Y,Wang X X,et al.Effect of ecological factors and physiological factors on the net photosynthetic rate of Ulmus pumila at various growth stages[J].Acta Ecologica Sinica,2016,36(6):1645-1651.
    [32]高伟.闽东丘陵区不同立地条件下无患子幼树光合日动态研究[J].防护林科技,2016(10):1-4.Gao W.Diurnal dynamics of photosynthesis of Sapindus mukorossi saplings under different site conditions in Fujian hilly region[J].Protection Forest Science and Technology,2016(10):1-4.
    [33]Stanhill G.Water use efficiency[J].Advances in Agronomy,1986,39:53-85.
    [34]Salvucci M E,Craftsbrandner S J.Inhibition of photosynthesis by heat stress:the activation state of Rubisco as a limiting factor in photosynthesis[J].Physiologia Plantarum,2010,120(2):179-186.
    [35]冯大兰,刘芸,黄建国,等.三峡库区消落带芦苇穗期光合生理特性研究[J].水生生物学报,2009,33(5):866-873.Feng D L,Liu Y,Huang J G,et al.The research of photosynthetic characters on Phragmites communis(Reed)in hydro-fluctuation belt of Three Gorges Reservoir Area[J].Acta Hydrobiologica Sinica,2009,33(5):866-873.
    [36]Hoyaux J,Moureaux C,Tourneyr D,et al.Extrapolating gross primary productivity from leaf to canopy scale in a winter wheat crop[J].Agricultural and Forest Meteorology,2008,148(4):668-679.
    [37]Pritchard S G,Ju Z L,Santen E V,et al.The influence of elevated CO2 on the activities of antioxidative enzymes in two soybean genotypes[J].Functional Plant Biology,2000,27(11):1061-1068.
    [38]Salvucci M E,Portis A R,Ogren W L.Light and CO2 response of Ribulose-1,5-Bisphosphate carboxylase/oxygenase activation in Arabidopsis leaves[J].Plant Physiology,1986,80(3):655-659.
    [39]宋于洋,塔依尔,王炳举,等.沙棘叶片光合速率与其环境因子的日变化规律研究[J].西北林学院学报,2007,22(1):8-11.Song Y Y,Tayir,Wang B J,et al.Daily changing rule between leaf net photosynthetic rate and plant environment factors in Hippophae rhamnoides L.[J].Journal of Northwest Forestry University,2007,22(1):8-11.
    [40]Liu X Z,Huang B R.Photosynthetic acclimation to high temperatures associated with heat tolerance in creeping bentgrass[J].Journal of plant physiology,2008,165(18):1947-1953.
    [41]黄小辉,冯大兰,刘芸,等.模拟石漠化异质生境中桑树的生长和叶绿素荧光特性[J].北京林业大学学报,2016,38(10):50-58.Huang X H,Feng D L,Liu Y,et al.Growth and chlorophyll fluorescence characteristics of mulberry trees in simulated environment of heterogeneous habitats of a rocky desertification area[J].Journal of Beijing Forestry University,2016,38(10):50-58.
    [42]吴栋栋,周永斌,于大炮,等.不同海拔长白山岳桦的生理变化[J].生态学报,2009,29(5):2279-2285.Wu D D,Zhou Y B,Yu D P,et al.Physiological response of Betula ermanii at different altitudes in Changbai Mountain[J].Acta Ecologica Sinica,2009,29(5):2279-2285.
    [43]Sharp R E,Matthews M A,Boyer J S.Kok effect and the quantum yield of photosynthesis:light partially inhibits dark respiration[J].Plant Physiology,1984,75(1):95-101.
    [44]陆燕元,马焕成,李昊民,等.土壤干旱对转基因甘薯光合曲线的响应[J].生态学报,2015,35(7):2155-2160.Lu Y Y,Ma H C,Li H M,et al.Light response characteristics of photosynthetic of transgenic sweet potato under drought stress[J].Acta Ecologica Sinica,2015,35(7):2155-2160.
    [45]高岚,乐佳兴,张文,等.2种树龄巴山榧对光照的响应[J].北京林业大学学报,2018,40(10):34-42.Gao L,Yue J X,Zhang W,et al.Response to light intensity of Torreya fargesii in two kinds of tree age[J].Journal of Beijing Forestry University,2018,40(10):34-42.
    [46]Richardson A D,Berlyn G P.Spectral reflectance and photosynthetic properties of Betula papyrifera(Betulaceae)leaves along an elevational gradient on Mt.Mansfield,Vermont,USA[J].American Journal of Botany,2002,89(1):88-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700