区间隧道火灾临界风速和温度特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Critical wind speed and temperature characteristics of interval tunnel fire
  • 作者:范晶 ; 马砺
  • 英文作者:FAN Jing;MA Li;College of Safety Science and Engineering, Xi'an University of Science and Technology;
  • 关键词:区间隧道 ; 临界风速 ; 通风控制 ; FDS
  • 英文关键词:interval tunnel;;critical wind speed;;predict model;;temperature distribution;;numerical simulation;;ventilation control;;FDS
  • 中文刊名:XFKJ
  • 英文刊名:Fire Science and Technology
  • 机构:西安科技大学安全科学与工程学院;
  • 出版日期:2019-01-15
  • 出版单位:消防科学与技术
  • 年:2019
  • 期:v.38;No.283
  • 基金:国家自然科学基金项目(51604215);; 陕西省自然科学基金项目(2018JM5078)
  • 语种:中文;
  • 页:XFKJ201901010
  • 页数:5
  • CN:01
  • ISSN:12-1311/TU
  • 分类号:32-36
摘要
为了研究地铁区间隧道火灾临界风速和温度变化规律,建立了西安某地铁站区间隧道模型,采用FDS模拟软件对不同纵向通风条件下烟气流动和温度分布进行模拟。介绍模型的基本参数,根据Froude相似性原理建立了各个燃烧参数的相似性关系。利用FDS模拟不同火灾功率、不同通风速度时的温度和烟气速度分布。对比分析5、6、7、8、9、10 MW火灾功率下的临界风速变规律化并提出预测模型。结果表明:纵向通风风速设为3m/s时对防止9 MW以下的火源功率火灾烟气回流效果明显;热释放速率不大于10 MW时,隧道火灾中烟气温度不大于250℃,火源下风侧烟气流动速度不大于4 m/s。
        In order to study the subway tunnel fire critical wind speed and temperature change rule, a subway tunnel model of subway in Xi'an was established, the FDS was used to simulate flue gas flow and temperature distribution under different longitudinal ventilation conditions. The basic parameters of the experimental model were introduced. According to the Froude similarity principle, the similarity relation of each combustion parameter was established. The temperature and flue gas velocity distribution under different fire power and different ventilation speed were simulated by FDS. The critical wind speed variation of 5,6,7,8,9 and 10 MW fire power was analyzed and the predict model was proposed.As a result, when longitudinal ventilation velocity is 3 m/s, the length of smoke backflow is reduced obviously with HRR less than9 MW. The smoke temperature in the tunnel is not more than250 ℃ and smoke flow rate is not more than 4 m/s when the heat release rate(HRR) is not more than 10 MW.
引文
[1]邓艳丽,谭志光.地铁火灾研究现状综述[J].安防科技,2008,(1):6-8.
    [2]陈霖,毕海权,刘小霞,等.地铁隧道火灾临界风速数值模拟分析[J].制冷与空调(四川),2017,31(3):245-248.
    [3] LU P,CONG B H,LIAO G X. Study of fire smoke flow characteristics of horizontal tunnel using longitudinal ventilation[J]. Engineering Science,2004,(10):59-64.
    [4]王君.阻塞效应对有、无坡隧道火灾临界风速及温度特性的影响研究[D].西安:西安建筑科技大学,2015.
    [5]朱中杰.地铁车辆火灾热释放速率计算方法研究[D].成都:西南交通大学,2016.
    [6] OKA Y,ATKINSON G T. Control of smoke flow in tunnel fires[J]. Fire Safety Journal,1995,25(4):305-322.
    [7] WU Y,BAKAR M Z A. Control of smoke flow in tunnel fires using longitudinal ventilation systems—a study of the critical velocity[J]. Fire Safety Journal,2000,35(4):363-390.
    [8] LI Y Z,LEI B,INGASON H. Study of critical velocity and backlayering length in longitudinally ventilated tunnel fires[J].Fire Safety Journal,2010,45(6-8):361-370.
    [9] ALPERT R L. Calculation of response time of ceiling-mounted fire detectors[J]. Fire Technology,1972,8(3):181-195.
    [10] KURIOKA H,OKA Y,SATOH H,et al. Fire properties in near field of square fire source with longitudinal ventilation in tunnels[J]. Fire Safety Journal,2003,38(4):319-340.
    [11]倪天晓.高速铁路隧道列车火灾烟气蔓延规律及控制特性研究[D].长沙:中南大学,2013.
    [12]顾正洪,程远平,倪照鹏.地铁车站火灾时事故通风量的研究[J].消防科学与技术,2005,24(3):298-300.
    [13]王文健,孙忠选.地铁火灾热释放速率研究[J].铁道车辆,2012,50(12):36-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700