沥青混合料骨架稳态参数及模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Steady-state Parameters and Model for Asphalt Mixture Skeletons
  • 作者:蔡旭 ; 祝凤丹 ; 吴旷怀 ; 万成
  • 英文作者:CAI Xu;ZHU Feng-dan;WU Kuang-huai;WAN Cheng;School of Civil Engineering, Guangzhou University;Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University;School of Civil Engineering and Architecture,Guangxi University;
  • 关键词:道路工程 ; 骨架稳态分析 ; 数字图像处理技术 ; 沥青混合料粗集料骨架 ; 骨架参数设计
  • 英文关键词:road engineering;;steady-state analysis;;digital image processing technology;;skeleton of coarse aggregates in asphalt mixture;;skeleton parameter design
  • 中文刊名:ZGGL
  • 英文刊名:China Journal of Highway and Transport
  • 机构:广州大学土木工程学院;广西大学广西防灾减灾与工程安全重点实验室;广西大学土木建筑工程学院;
  • 出版日期:2019-02-15
  • 出版单位:中国公路学报
  • 年:2019
  • 期:v.32;No.186
  • 基金:国家自然科学基金项目(51708144,51878193);; 广东省自然科学基金项目(2014A030310272);; 广西重点实验室系统性研究项目(2015ZDX007)
  • 语种:中文;
  • 页:ZGGL201902005
  • 页数:9
  • CN:02
  • ISSN:61-1313/U
  • 分类号:43-50+100
摘要
为明确沥青混合料粗集料的骨架特征参数与路用性能之间的相关性,基于优化的分级掺配设计方法设计3种骨架密实型沥青混合料,采用数字图像处理技术观察混合料粗集料骨架特征参数转变的全过程,结合路用性能试验建立基于骨架特征参数的动稳定度估算模型,研究骨架参数的合理范围。研究结果表明:采用简化的分级掺配设计方法可以得到3种不同骨架特征的沥青混合料;混合料的空隙率和矿料间隙率VMA随着粗集料分级掺配次数的增加而降低,稳定度和动稳定度指标则随着掺配次数的增加而增加;混合料密度和有效沥青饱和度VFA最大值出现在二级掺配混合料中,采用间断级配有利于增加混合料的密度;随着掺配次数的增加,混合料粗集料接触点数量先增多后减少,但集料长轴水平倾角呈减小趋势;成型后混合料粗集料长轴初始倾角越小,混合料的动稳定度越高;试验数据暗示了沥青混合料存在一个粗集料骨架初始接触点数与初始倾角的合理范围,使混合料在一定的压实功下能够形成稳定的骨架嵌挤结构;混合料的粗集料接触点不宜过多,级配设计时应将粗集料接触点的数量控制在一个合理范围内;建立的沥青混合料动稳定度估算模型可分辨出粗集料接触点、倾角和沥青种类对混合料动稳定度的影响,但仅适用于有显著骨架特征的混合料。
        To clarify the correlation between the skeletal characteristic parameters of the coarse aggregate of asphalt mixture and road performance, three kinds of skeleton dense asphalt mixtures based on the simplified multilevel mixing design method were designed. The transformation process of the steady-state of the coarse aggregate skeleton of the mixtures was observed using digital image processing. The characteristic parameters of the skeleton were combined with the road performance experiment to establish a dynamic stability estimation model and identify the reasonable range for the skeletons' parameters. The results indicate that asphalt mixtures with three different skeletal features can be obtained using the simplified multilevel mixing design method. The voids in the mineral aggregate of the mixture decrease with each mixing stage, and the stability and dynamic stability increase. The maximum density and voids filled with asphalt appear in the second mixing stage. Usage of gap grading helps increase the density of the mixture. The number of contact points of the mixture coarse aggregate first increases and then decreases with each mixing stage, but the horizontal inclination of the long axis of the aggregate decreases. The smaller the initial inclination of the long axis of the aggregate in specimens after formation, the higher the dynamic stability index of the mixture. The test data imply that a reasonable range of initial contact points and initial inclination of the coarse aggregate skeleton in the asphalt mixture exist so that the mixture can form a stable skeleton embedded structure under certain compaction conditions. The coarse aggregate contact point of the mixture should not be excessive, and the number of contact points should be controlled within a reasonable range during the grading design. The established asphalt mixture dynamic stability estimation model can distinguish the influence of the contact point, inclination, and asphalt type on the dynamic stability of the mixture for mixtures with specific skeleton characteristics.
引文
[1] WANG H, ZHANG R, CHEN Y, et al. Study on Microstructure of Rubberized Recycled Hot Mix Asphalt Based X-ray CT Technology [J]. Construction and Building Materials, 2016, 121: 177-184.
    [2] MOAVENI M, CETIN S, BRAND A S, et al. Machine Vision Based Characterization of Particle Shape and Asphalt Coating in Reclaimed Asphalt Pavement [J]. Transportation Geotechnics, 2016, 6: 26-37.
    [3] 黄优,刘朝晖,王旭东,等.基于骨架最紧密状态的沥青混合料配合比设计方法[J].中外公路,2016,36(5):216-221. HUANG You, LIU Zhao-hui, WANG Xu-dong, et al. Asphalt Mix Design Method Based on Closest Skeleton Condition [J]. Journal of China & Foreign Highway, 2016, 36 (5): 216-221.
    [4] 张东,黄晓明,赵永利.沥青玛蹄脂混合料矿料骨架构成及其接触特性[J].吉林大学学报:工学版,2015,45(2):394-399. ZHANG Dong, HUANG Xiao-ming, ZHAO Yong-li. Aggregate Skeleton Composition of Stone Mastic Asphalt and Its Contact Properties [J]. Journal of Jilin University: Engineering and Technology Edition, 2015, 45 (2): 394-399.
    [5] 王旭东.一种新型沥青混合料体积设计方法的探讨[J].上海公路,2011(2):1-3. WANG Xu-dong. Discussion on a New Volume Design Method for Asphalt Mixture [J]. Shanghai Highways, 2011 (2): 1-3.
    [6] 张肖宁,郭祖辛,吴旷怀.按体积设计沥青混合料[J].哈尔滨建筑大学学报,1995,28(2):28-36. ZHANG Xiao-ning, GUO Zu-xin, WU Kuang-huai. Volume Method of Bituminous Mixture Design [J]. Journal of Harbin University of Civil Engineering and Architecture, 1995, 28 (2): 28-36.
    [7] 江晓霞,沙爱民.超大粒径沥青混合料的成型方法[J].长安大学学报:自然科学版,2012,32(4):7-11. JIANG Xiao-xia, SHA Ai-min. Molding Method of Super Large Stone Asphalt Mixture [J]. Journal of Changan University: Natural Science Edition, 2012, 32 (4): 7-11.
    [8] 马骉,周雪艳,司伟,等.青藏高寒地区沥青混合料的水稳定性与高温性能研究[J].冰川冻土,2015,37(1):175-182. MA Biao, ZHOU Xue-yan, SI Wei, et al. Study of the Water Stability and High Temperature Performance of Asphalt Mixtures in Qinghai-Tibet Cold Regions [J]. Journal of Glaciology and Geocryology, 2015, 37 (1): 175-182.
    [9] 邱志雄,李智,李东海,等.骨架密实型沥青混合料细观结构的抗滑特性[J].华南理工大学学报:自然科学版,2013,41(4):107-112. QIU Zhi-xiong, LI Zhi, LI Dong-hai, et al. Anti-slide Properties of Meso-structure of Dense Skeleton Asphalt Mixture [J]. Journal of South China University of Technology: Natural Science Edition, 2013, 41 (4): 107-112.
    [10] LOPES M, MOUILLET V, BERNUCCI L, et al. The Potential of Attenuated Total Reflection Imaging in the Mid-infrared for the Study of Recycled Asphalt Mixtures [J]. Construction and Building Materials, 2016, 124: 1120-1131.
    [11] 徐龙,毕玉峰,于大海.骨架密实型沥青混合料级配优化设计及性能分析[J].山东建筑大学学报,2017,32(3):263-268. XU Long, BI Yu-feng, YU Da-hai. Gradation Optimized Design and Performance Analysis of Skeleton Dense Asphalt Mixture [J]. Journal of Shandong Jianzhu University, 2017, 32 (3): 263-268.
    [12] YOU T. Two-and Three-dimensional Micro Structural Modeling of Asphalt Particulate Composite Materials Using a Unified Viscoelastic-viscoplastic-viscodamage Constitutive Model [D]. College Station: Texas A & M University, 2013.
    [13] 谭忆秋,邢超,任俊达,等.基于颗粒堆积理论的沥青混合料细观结构特性研究[J].中国公路学报,2017,30(7):1-8. TAN Yi-qiu, XING Chao, REN Jun-da, et al. Research on Mesostructured Characteristics of Asphalt Mixture Based on Particle Packing Theory [J]. China Journal of Highway and Transport, 2017, 30 (7): 1-8.
    [14] 栗培龙,张争奇,王秉纲.沥青混合料高温蠕变变形行为及机理[J].建筑材料学报,2012,15(3):422-426. LI Pei-long, ZHANG Zheng-qi, WANG Bing-gang. High-temperature Creep Deformation Behavior and Its Mechanism of Asphalt Mixture [J]. Journal of Building Materials, 2012, 15 (3): 422-426.
    [15] 栗培龙,马莉霞,李爽,等.沥青混合料矿料滑移剪切变形特性[J].广西大学学报:自然科学版,2016,41(1):261-269. LI Pei-long, MA Li-xia, LI Shuang, et al. Aggregate Slip Shear Deformation Properties of Asphalt Mixture [J]. Journal of Guangxi University: Natural Science Edition, 2016, 41 (1): 261-269.
    [16] 石立万,王端宜.基于数字图像处理的沥青混合料主骨架评价标准[J].中国公路学报,2017,30(5):52-58,73. SHI Li-wan, WANG Duan-yi. Evaluation Indexes of Asphalt Mixture Main Skeleton Based on Digital Image Processing [J]. China Journal of Highway and Transport, 2017, 30 (5): 52-58, 73.
    [17] 郑健龙,陈骁,钱国平.松散热态沥青混合料压实力学响应及其粘弹塑性模型参数分析[J].工程力学,2010,27(1):33-40. ZHENG Jian-long, CHEN Xiao, QIAN Guo-ping. Compaction Mechanical Response and Analysis of Viscoelastoplasticity Model Parameter for Loose Hot Asphalt Mixture [J]. Engineering Mechanics, 2010, 27 (1): 33-40.
    [18] 蒋玮,沙爱民,裴建中,等.多孔沥青混合料旋转压实特性[J].长安大学学报:自然科学版,2010,30(5):11-16. JIANG Wei, SHA Ai-min, PEI Jian-zhong, et al. Gyratory Compaction Characteristics of Porous Asphalt Concrete [J]. Journal of Chang'an University: Natural Science Edition, 2010, 30 (5): 11-16.
    [19] 任俊达.基于X-ray CT沥青混合料细观结构及力学性能研究[D].哈尔滨:哈尔滨工业大学,2014. REN Jun-da. Research on Mesoscopic Structure and Mechanical Properties of Asphalt Mixture Based on X-Ray CT [D]. Harbin: Harbin Institute of Technology, 2014.
    [20] 孙岩松,徐东,张文刚.集料骨架特性的分形分析和细观模型评价[J].材料导报,2012,26(9):161-164. SUN Yan-song, XU Dong, ZHANG Wen-gang. Fractal Analysis and Model Evaluation of Skeleton Characteristic of Aggregates [J]. Materials Review, 2012, 26 (9): 161-164.
    [21] CAI X, WANG D. Evaluation of Rutting Performance of Asphalt Mixture Based on the Granular Media Theory and Aggregate Contact Characteristics [J]. Road Materials and Pavement Design, 2013, 14 (2): 325-340.
    [22] 虞将苗,詹小丽,卢亮,等.沥青混合料抗车辙能力优化设计[J].公路交通科技,2009,26(9):1-5. YU Jiang-miao, ZHAN Xiao-li, LU Liang, et al. Optimal Design for Rut Resistance of Asphalt Mixture [J]. Journal of Highway and Transportation Research and Development, 2009, 26 (9): 1-5.
    [23] 杜顺成,刘丽萍,戴经梁.高抗剪能力粗集料级配设计方法[J].中国公路学报,2010,23(4):27-32. DU Shun-cheng, LIU Li-ping, DAI Jing-liang. Method of Coarse Aggregate Gradation Design with Higher Anti-shearing Ability [J]. China Journal of Highway and Transport, 2010, 23 (4): 27-32.
    [24] LEES G. The Rational Design of Aggregate Gradings for Dense Asphaltic Compositions [C] // TRB. Proceedings of Association of Asphalt Paving Technologists. Washington DC: TRB, 1970: 60-90.
    [25] 石立万,王端宜,蔡旭,等.基于数字图像处理的粗集料接触分布特性[J].中国公路学报,2014,27(8):23-31. SHI Li-wan, WANG Duan-yi, CAI Xu, et al. Distribution Characteristics of Coarse Aggregate Contacts Based on Digital Image Processing Technique [J]. China Journal of Highway and Transport, 2014, 27 (8): 23-31.
    [26] 蔡旭,王端宜,吴旷怀,等.采用简化的分级掺配法设计抗车辙型沥青混合料[J].公路交通科技,2016,33(3):13-17,23. CAI Xu, WANG Duan-yi, WU Kuang-huai, et al. Design of Rut Resistance Asphalt Mixture with Simplified Multilevel Mixing Method [J]. Journal of Highway and Transportation Research and Development, 2016, 33 (3): 13-17, 23.
    [27] 王端宜,黎侃,蔡旭.基于集料接触特性的沥青混合料抗车辙性能评价[J].华南理工大学学报:自然科学版,2012,40(11):121-126. WANG Duan-yi, LI Kan, CAI Xu. Evaluation of Rutting Resistance of Asphalt Mixture Based on Aggregate Contact Characteristics [J]. Journal of South China University of Technology: Natural Science Edition, 2012, 40 (11): 121-126.
    [28] 蔡旭.沥青路面抗车辙性能评价及结构优化[D].广州:华南理工大学,2013. CAI Xu. Rutting Resistance Evaluation and Structure Optimization of Asphalt Pavement [D]. Guangzhou: South China University of Technology, 2013.
    [29] 蔡旭,王端宜,黎侃,等.基于散体力学的沥青混合料剪切模量预估[J].中国公路学报,2013,26(6): 38-46. CAI Xu, WANG Duan-yi, LI Kan, et al. Prediction of Shear Modulus of Asphalt Mixtures Based on Granular Mechanics [J]. China Journal of Highway and Transport, 2013, 26 (6): 38-46.
    [30] 赵永利,黄晓明.矿料级配基本性能的试验研究[J].公路交通科技,2004,21(6):1-3. ZHAO Yong-li, HUANG Xiao-ming. Experimental Research on Basic Properties of Aggregation Gradation [J]. Journal of Highway and Transportation Research and Development, 2004, 21 (6): 1-3.
    [31] 王真,黄晓明,赵永利.集料衰变规律及机理[J].东南大学学报:自然科学版,2011,41(5):1092-1097. WANG Zhen, HUANG Xiao-ming, ZHAO Yong-li. Rules and Mechanism of Aggregates Fragmentation [J]. Journal of Southeast University: Natural Science Edition, 2011, 41 (5): 1092-1097.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700