基于加速度测量的高超声速飞行器抗干扰控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Anti-disturbance Control for Hypersonic Vehicles Based on Acceleration Measurement
  • 作者:张伸 ; 王青 ; 董朝阳 ; 杨格
  • 英文作者:ZHANG Shen;WANG Qing;DONG Chao-yang;YANG Ge;School of Automation Science and Electrical Engineering,Beihang University;School of Aeronautic Science and Engineering,Beihang University;System Engineering Research Institute,China State Shipbuilding Corporation Limited;
  • 关键词:高超声速飞行器 ; 反步法 ; 加速度测量 ; 非线性干扰观测器 ; 动态逆
  • 英文关键词:hypersonic vehicle;;backstepping method;;acceleration measurement;;nonlinear disturbance observer;;dynamic inversion
  • 中文刊名:BIGO
  • 英文刊名:Acta Armamentarii
  • 机构:北京航空航天大学自动化与电气工程学院;北京航空航天大学航空科学与工程学院;中国船舶工业集团有限公司系统工程研究院;
  • 出版日期:2018-09-15
  • 出版单位:兵工学报
  • 年:2018
  • 期:v.39;No.258
  • 基金:航空科学基金项目(2016ZA51011)
  • 语种:中文;
  • 页:BIGO201809009
  • 页数:8
  • CN:09
  • ISSN:11-2176/TJ
  • 分类号:72-79
摘要
针对吸气式高超声速飞行器气动特性复杂且不确定性强的特点,提出了一种基于加速度测量信号,包括内、外双回路设计的反步抗干扰控制方案。外回路在反步法中引入传感器所测加速度信号,并设计非线性干扰观测器对复合干扰进行观测与补偿;内回路设计采用基于奇异摄动理论的动态逆方法,利用Lyapunov理论证明了系统的一致最终有界。该控制方案均基于传感器可以直接测得的信号构成控制,对气动参数不确定鲁棒性强,且通过干扰观测进一步提高系统抗干扰能力。仿真结果表明,反步抗干扰控制方案在强不确定性与外部干扰条件下,可获得理想的控制效果。
        An anti-disturbance backstepping control scheme based on acceleration measurement is proposed for the complexity and uncertainty of the aerodynamic characteristics of air-breathing hypersonic vehicle( AHV). The control scheme includes both internal and external loop designs. The external loop introduces the measured acceleration signals of sensor in the backstepping method. And a nonlinear disturbance observer is designed to observe and compensate the composite disturbance. The dynamic inversion method based on singular perturbation theory is used for the internal loop design. The Lyapunov theory is used to prove the uniformly ultimately bounded stabilization. In this scheme,the control signal is totally constituted by signals which can be directly measured by sensors. The controller has high robustness for the uncertainty of aerodynamic parameters. Moreover,the anti-disturbance capacity is improved by the disturbance observer. The simulated results demonstrate that the control scheme can obtain desired control performance considering high uncertainty and external disturbance.
引文
[1]Sziroczak D,Smith H.A review of design issues specific to hypersonic flight vehicles[J].Progress in Aerospace Sciences,2016,84(7):1-28.
    [2]Hank J M,Murphy J S,Mutzman R C.The X-51A scramjet engine flight demonstration program,AIAA-2008-2540[R].Reston,VA,US:AIAA,2008.
    [3]孙长银,穆朝絮,余瑶.近空间高超声速飞行器控制的几个科学问题研究[J].自动化学报,2013,39(11):1901-1913.SUN Chang-yin,MU Chao-xu,YU Yao.Some control problems for near space hypersonic vehicles[J].Acta Automatica Sinica,2013,39(11):1901-1913.(in Chinese)
    [4]方洋旺,柴栋,毛东辉,等.吸气式高超声速飞行器制导与控制研究现状及发展趋势[J].航空学报,2014,35(7):1776-1786.FANG Yang-wang,CHAI Dong,MAO Dong-hui,et al.Status and development trend of the guidance and control for air-breathing hypersonic vehicles[J].Acta Aeronautica et Astronautica Sinca,2014,35(7):1776-1786.(in Chinese)
    [5]Parker J T,Serrani A,Yurkovich S,et al.Control-oriented modeling of an air-breathing hypersonic vehicle[J].Journal of Guidance,Control,and Dynamics,2007,30(3):856-869.
    [6]Fiorentini L,Serrani A,Bolender M A,et al.Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicle[J].Journal of Guidance,Control,and Dynamics,2009,32(2):401-416.
    [7]Sun H B,Li S H,Sun C Y.Finite time integral sliding model control of hypersonic vehicles[J].Nonlinear Dynamics,2013,73(1/2):229-244.
    [8]Hu X X,Wu L G,Hu C H,et al.Sliding mode tracking control for a flexible air-breathing hypersonic vehicle[J].Journal of Franklin Institute,2012,349(2):559-577.
    [9]Zhang S,Wang Q,Dong C Y.A novel adaptive dynamic surface control scheme of hypersonic flight vehicle with thrust and actuator constraints[J/OL].Transactions of the Institute of Measurement and Control(2017-05-03)[2017-09-25].http:∥journals.sagepub.com/doi/abs/10.1177/014233121768690223.
    [10]王肖,郭杰,唐胜景,等.吸气式高超声速飞行器鲁棒非奇异Terminal滑模反步控制[J].航空学报,2017,38(3):189-201.WANG Xiao,GUO Jie,TANG Sheng-jing,et al.Robust nonsingular terminal sliding mode backstepping control for air-breathing hypersonic vehicles[J].Acta Aeronautica et Astronautica Sinca,2017,38(3):189-201.(in Chinese)
    [11]Bu X W,Wu X Y,Ma Z,et al.Nonsingular direct neural control of air-breathing hypersonic vehicle via backstepping[J].Neurocomputing,2015,153(1):164-173.
    [12]张旭,王利,林言中,等.超燃冲压发动机总体化性能分析[J].推进技术,2014,35(2):157-165.ZHANG Xu,WANG Li,LIN Yan-zhong,et al.Analysis of overall scramjet performance[J].Journal of Propulsion Technology,2014,35(2):157-165.(in Chinese)
    [13]Bahm C,Baumann E,Martin J,et al.The X-43A Hyper-X Mach 7 flight 2 guidance,navigation,and control overview and flight test results[C]∥AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference.Capua,Italy:AIAA,2005.
    [14]Hovakimyan N,Lavretsky E,Sasane A.Dynamic inversion for nonaffine-in-control systems via time-scale separation[J].Journal of Guidance,Control,and Dynamics,2007,13(4):451-465.
    [15]Shaughnessy J D,Pinckney S Z.Hypersonic vehicle simulation model:winged-cone configuration,NASA-TM-102610[R].Hampton,VA,US:NASA Langley Research Center,1990.
    [16]Chen W H.Nonlinear disturbance observer-enhanced dynamic inversion control of missiles[J].Journal of Guidance,Control,and Dynamics,2003,26(1):161-166.
    [17]Menon P K,Badgett M E,Waker R A,et al.Nonlinear flight test trajectory controllers for aircraft[J].Journal of Guidance,Control,and Dynamics,1998,21(1):67-72.
    [18]Waseem A B,Lin Y,Amezquita S K.Adaptive dynamic surface control of a hypersonic flight vehicle with improved tracking[J].Asian Journal of Control,2013,15(2):594-605.
    [19]Zong Q,Wang F,Tian B L,et al.Robust adaptive dynamic surface control design for a flexible air-breathing hypersonic vehicle with input constraints and uncertainty[J].Nonlinear Dynamics,2014,78(1):289-315.
    [20]Hovakimyan N,Lavretsky E,Sasane A,et al.Dynamic inversion for nonaffine-in-control systems via time-scale separation.Part I[J].Journal of Dynamical and Control Systems,2007,13(4):451-465.
    [21]Xu B,Huang X Y,Wang D W,et al.Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation[J].Asian Journal of Control,2014,16(1):162-174.
    [22]Wang Q,Stengel R F.Robust nonlinear control of a hypersonic aircraft[J].Journal of Guidance,Control,and Dynamics,2000,23(4):577-585.
    [23]Wang Y H,Wu Q X.Adaptive non-affine control for the shortperiod model of a generic hypersonic flight vehicle[J].Aerospace Science and Technology,2017,66:193-202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700