高超音速飞行器及其制导控制技术综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A survey of the hypersonic flight vehicle and its guidance and control technology
  • 作者:穆凌霞 ; 王新民 ; 谢蓉 ; 张友民 ; 李滨 ; 王剑
  • 英文作者:MU Lingxia;WANG Xinmin;XIE Rong;ZHANG Youmin;LI Bin;WANG Jian;School of Automation, Northwestern Polytechnical University;School of Automation and Information Engineering, Xi'an University of Technology;Department of Mechanical, Industrial & Aerospace Engineering, Concordia University;
  • 关键词:高超音速飞行器 ; 再入返回 ; 轨迹制导 ; 轨迹重构 ; 高超音速飞行控制 ; 制导控制一体化 ; 智能自主高超音速飞行
  • 英文关键词:hypersonic flight vehicle;;reentry guidance;;trajectory-based guidance;;trajectory re-planning;;hypersonic flight control;;integrated guidance and control;;autonomous hypersonic flight
  • 中文刊名:HEBX
  • 英文刊名:Journal of Harbin Institute of Technology
  • 机构:西北工业大学自动化学院;西安理工大学自动化与信息工程学院;康考迪亚大学机械工业与航空工程系;
  • 出版日期:2019-01-03 11:09
  • 出版单位:哈尔滨工业大学学报
  • 年:2019
  • 期:v.51
  • 基金:国家自然科学基金(61833013)
  • 语种:中文;
  • 页:HEBX201903001
  • 页数:14
  • CN:03
  • ISSN:23-1235/T
  • 分类号:7-20
摘要
高超音速飞行器军事上的强突防、强侦察能力,民用上的高效部署、星际旅行能力,使其成为各国构建战略威胁、争夺太空资源的重要途径之一,针对这一热点前沿问题,综述了高超音速飞行器的发展及其制导控制技术.首先,对高超音速飞行器的研制历史及现状进行总结,梳理发展脉络揭示其发展规律,并对高超音速飞行器轨道、近空间及大气层内飞行任务进行分析.然后,重点讨论再入返回的飞行约束条件及制导方法,包括:离线轨迹制导、在线轨迹制导以及预测制导,并针对复杂环境下强约束、任务突变等制导难点,展望高精度多约束轨迹制导、快速轨迹规划制导、鲁棒自适应轨迹重构制导等技术;进而,综述了目前高超音速强非线性、不确定性、时变性、结构挠性、控制约束及故障等控制难题及其解决方法,并对系统模型/扰动/故障深层次机理分析、多控制问题兼顾及多控制器切换、智能自主高超音速飞行等控制技术提出了展望.最后,指出了高超音速飞行器的发展需兼顾高超音速打击武器及可重复使用空天往返运载技术,制导控制系统的研制需向极广空域下的智能自主高超音速制导与控制一体化迈进.
        Hypersonic flight vehicles(HFVs) have strong penetration and reconnaissance capabilities in military affairs, efficient deployment and space travel capabilities in civil use, making them one of the important ways for countries to construct strategic threats and compete for space resources. Hence, it draws much attention from many countries. The paper firstly reviews the development history and current research status of the HFVs, aiming to reveal the development principle. It is followed by the flight task analysis in different space domains ranging from orbiting space, near-space, and airspace. Then, the flight constraints and guidance methods for the reentry phase are mainly discussed, including offline reference trajectory-based guidance method, online trajectory-based guidance method, and prediction guidance method. Furthermore, the expectation of the future guidance system is given which lies in multi-constraints trajectory-based guidance method with high accuracy, nonlinear programming trajectory optimization-based guidance in real-time, and trajectory re-planning guidance technology with robustness to different tasks. Thirdly, the hypersonic flight control methods on solving the problem of high nonlinearity, uncertainty, time-varying, flexibility, input constraint, and system fault are summarized. Then, looking into the future, three aspects are discussed, including the deep mechanism analysis on system model/disturbance/fault, the control tradeoff when solving multiple problems, controller smooth switching technology, and autonomous hypersonic flight control in the present of the unexpected events. At last, the thinking on the HFV future development including hypersonic missile and reusable launch vehicle is provided, as well as the integrated guidance and control system design.
引文
[1] ANDERSON J D. Hypersonic and high temperature gas dynamics[M]. New York: McGraw-Hill Book Company, 1989
    [2] Committee on Review and Evaluation of the Air Force Hypersonic Technology Program, National Research Council. Review and evaluation of the air force hypersonic technology program[R]. Washington DC: National Academics Publications, 1998
    [3] 张攀峰, 詹世革. 从国家自然科学基金资助看高超声速流动研究的发展现状[J]. 航空学报, 2015, 36(1):1 ZHANG Panfeng, ZHAN Shige. Development of hypersonic flow research in China based on supported projects of NSFC[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):1
    [4] 胡冬冬, 刘晓明, 张绍芳, 等. 2016年国外高超声速飞行器技术发展综述[J]. 战术导弹技术, 2017(1):28 HU Dongdong, LIU Xiaoming, ZHANG Shaofang, et al. Review of hypersonic technologies progresses abroad in 2016[J]. Tactical Missile Technology, 2017(1):28
    [5] 张灿, 胡冬冬, 叶蕾, 等. 2017年国外高超声速飞行器技术发展综述[J]. 战术导弹技术, 2018(1):47 ZHANG Can, HU Dongdong, YE Lei, et al. Review of the development of hypersonic vehicle technology abroad in 2017[J]. Tactical Missile Technology, 2018(1):47
    [6] 孙长银, 穆朝絮, 余瑶. 近空间高超声速飞行器控制的几个科学问题研究[J]. 自动化学报, 2013, 39(11):1901 SUN Changyin, MU Chaoxu, YU Yao. Some control problems for near space hypersonic vehicles[J]. Acta Automatica Sinica, 2013, 39(11): 1901
    [7] XU Bin, SHI Zhongke. An overview on flight dynamics and control approaches for hypersonic vehicles[J]. Science China Information Sciences, 2015, 58(7):1
    [8] 任章, 白辰. 高超声速飞行器飞行控制技术研究综述[J]. 导航定位与授时, 2015, 2(6):1 REN Zhang, BAI Chen. The overview of difficulties and methods of hypersonic vehicle flight control[J]. Navigation Positioning & Timing, 2015, 2(6):1
    [9] 吴立刚, 安昊, 刘健行, 等. 吸气式高超声速飞行器控制的最新研究进展[J]. 哈尔滨工业大学学报, 2016, 48(10):1 WU Ligang, AN Hao, LIU Jianxing, et al. Recent progress in control of air-breathing hypersonic vehicles[J]. Journal of Harbin Institute of Technology, 2016, 48(10):1
    [10]宗群, 李勍, 尤明, 等. 高超声速飞行器建模与自主控制技术研究进展[J]. 科技导报, 2017, 35(21):95 ZONG Qun, LI Qing, YOU Ming, et al. New development of modeling and autonomous control for hypersonic vehicle[J]. Science & Technology Review, 2017, 35(21):95
    [11]甄子洋, 朱平, 江驹, 等. 基于自适应控制的近空间高超声速飞行器研究进展[J]. 宇航学报, 2018, 39(4):355 ZHEN Ziyang, ZHU Ping, JIANG Ju, et al. Research progress of adaptive control for hypersonic vehicle in near space[J]. Journal of Astronautics, 2018, 39(4): 355
    [12]方洋旺, 柴栋, 毛东辉, 等. 吸气式高超声速飞行器制导与控制研究现状及发展趋势[J]. 航空学报, 2014, 35(7):1776 FANG Yangwang, CHAI Dong, MAO Donghui, et al. Status and development trend of the guidance and control air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1776
    [13]钱佳淞, 齐瑞云, 姜斌. 高超声速飞行器再入容错制导技术综述[J]. 飞行力学, 2015, 33(5):390 QIAN Jiasong, QI Ruiyun, JIANG Bin. Review of reentry fault-tolerant guidance technology on hypersonic vehicles[J]. Flight Dynamics, 2015, 33(5):390
    [14]黄长强, 国海峰, 丁达理. 高超声速滑翔飞行器轨迹优化与制导综述[J]. 宇航学报, 2014, 35(4):369 HUANG Changqiang, GUO Haifeng, DING Dali. A survey of trajectory optimization and guidance for hypersonic gliding vehicle[J]. Journal of Astronautics, 2014, 35(4):369
    [15]刘思源, 梁子璇, 任章, 等. 高超声速滑翔飞行器再入段制导方法综述[J]. 中国空间科学技术, 2016, 36(6):1 LIU Siyuan, LIANG Zixuan, REN Zhang, et al. Review of reentry guidance methods for hypersonic gliding vehicles[J]. Chinese Space Science and Technology, 2016, 36(6):1
    [16]潘亮, 谢愈, 彭双春, 等. 高超声速飞行器滑翔制导方法综述[J]. 国防科技大学学报, 2017, 39(3):15 PAN Liang, XIE Yu, PENG Shuangchun, et al. A survey of gliding guidance methods for hypersonic vehicles[J]. Journal of National University of Defense Technology, 2017, 39(3):15
    [17]HANSON J M. A plan for advanced guidance and control technology for 2nd generation reusable launch vehicles[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Monterey, California: AIAA, 2002:4557
    [18]MOSELEY P E. The Apollo entry guidance: a review of the mathematical development and its operational characteristics[R].Houston, TX:TRW,1969
    [19]HARPOLD J C, GRAVES C A. Shuttle entryguidance[J]. Journal of Astronautical Sciences, 1979, 37(3):239
    [20]MU Lingxia, YU Xiang, ZHANG Youmin, et al. Onboard guidance system design for reusable launch vehicles in the terminal area energy management phase[J]. Acta Astronautica, 2018, 143(2): 62
    [21]MU Lingxia, YU Xiang, ZHANG Youmin, et al. Trajectory planning for terminal area energy management phase of reusable launch vehicles[J]. 20th IFAC Symposium on Automatic Control in Aerospace, 2016, 49(17): 462
    [22]穆凌霞, 李平, 李乐尧, 等. RLV 末端能量管理段的在线轨迹规划算法[J]. 系统工程与电子技术, 2017, 39(3): 591 MU Lingxia, LI Ping, LI Leyao, et al. Onboard trajectory planning algorithm for terminal area energy management phase of a RLV[J]. Systems Engineering and Electronics, 2017, 39(3):591
    [23]TIAN Bailing, FAN Wenru, SU Rui, et al. Real-time trajectory and attitude coordination control for reusable launch vehicle in reentry phase[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3):1639
    [24]LU Ping. Entry guidance: a unified method[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3):713
    [25]LU Ping, BRUNNER C W, STACHOWIAK S J, et al. Verification of a fully numerical entry guidance algorithm[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(2):230
    [26]BRUNNER C, LU Ping. Skip entry trajectory planning and guidance[J]. Journal of Spacecraft and Rockets, 2008, 31(5):1210
    [27]XUE Songbai, LU Ping. Constrained predictor-corrector entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4):1273
    [28]BOLLINO K P. High-fidelity real-time trajectory optimization for reusable launch vehicles[D]. Monterey, California: Naval Postgraduate School, 2006
    [29]MILAM M B. Real-time optimal trajectory generation for constrained dynamical systems[D].Pasadena, California: California Institute of Technology, 2003
    [30]SAGLIANO M, THEIL S, D′ONOFRIO V, et al.SPARTAN: a novel pseudospectral algorithm for entry, descent, and landing analysis[C]//The 4th CEAS Specialist Conference on Guidance, Navigation and Control. Warsaw, Poland: Springer, 2017:669
    [31]HALL C E, GALLAHER M W, HENDRIX N D. X-33 attitude control system design for ascent, transition, and entry flight regimes[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Boston, MA: AIAA, 1998:4411
    [32]BAHM C, BAUMANN E, MARTINS J, et al. The X-43AHyper-X Mach 7 flight 2 guidance, navigation, and control overview and flight test results[C]//AIAA/CIRA 13th International Space Planes and Hypersonic Systems and Technologies. Capua, Italy: AIAA, 2005:3275
    [33]李乐尧. 高超声速飞行器飞控系统的故障诊断与容错控制技术研究[D]. 西安:西北工业大学, 2015 LI Leyao. Research on fault diagnosis and fault-tolerant control for the flight control system of hypersonic vehicle[D]. Xi’an: Northwestern Polytechnical University, 2015
    [34]FIORENTINI L, SERRANI A. Adaptive restricted trajectory tracking fora non-minimum phase hypersonic vehicle model[J]. Automatica, 2012, 48(7):1248
    [35]晁涛, 王雨潇, 王松艳, 等. 考虑非最小相位特性的高超声速飞行器轨迹跟踪控制[J]. 系统工程与电子技术, 2018, 40(7):1548 CHAO Tao, WANG Yuxiao, WANG Songyan, et al. Trajectory tracking control for non-minimum phase hypersonic vehicles[J]. Systems Engineering and Electronics, 2018, 40(7):1548
    [36]WANG Zhi, BAO Weimin, LI Huifeng. Second-order dynamic sliding-mode control for nonminimum phase underactuated hypersonic vehicles[J]. IEEE Transactions on Industrial Electronics, 2017, 64(4):3105
    [37]YE Linqi, ZONG Qun, CRASSIDIS J L, et al. Output-redefinition-based dynamic inversion control for a nonminimum phase hypersonic vehicle[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4):3447
    [38]郭宗易, 周军, 郭建国. 新型高超声速飞行器耦合姿态控制系统设计[J]. 宇航学报, 2017, 38(3):270 GUO Zongyi, ZHOU Jun, GUO Jianguo. Novel coupling based attitude control system design for hypersonic vehicles[J]. Journal of Astronautics, 2017, 38(3):270
    [39]BUSHCEK H, CALISE A J. Uncertainty modeling and fixed-order controller design for a hypersonic vehicle model[J]. Journal of Guidance, Control and Dynamics, 1997, 20(1):42
    [40]BANERJEE S, WANG Z, BAUR B, et al. L1 adaptive control augmentation for the longitudinal dynamics of a hypersonic glider[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(2):275
    [41]BANERJEE S, BOYCE R, WANG Z, et al. L1 augmented controller for a lateral/directional maneuver of a hypersonic glider[J]. Journal of Aircraft, 2017, 54(4):1257
    [42]杜立夫, 黄万伟, 刘晓东, 等. 考虑特征模型的高超声速飞行器全通道自适应控制[J]. 宇航学报, 2016, 37(6):711 DU Lifu, HUANG Wanwei, LIU Xiaodong, et al. Whole channel adaptive control for hypersonic vehicle considering characteristic model[J]. Journal of Astronautics, 2016, 37(6):711
    [43]李昭莹, 余令艺, 刘昊, 等. 高超声速飞行器非线性鲁棒控制律设计[J]. 控制理论与应用, 2016, 33(1):62 LI Zhaoying, YU Lingyi, LIU Hao, et al. Nonlinear robust controller design for hypersonic vehicles[J]. Control Theory & Applications, 2016, 33(1):62
    [44]ZHANG Shen, WANG Qing, DONG Chaoyang. Extended state observer based control for generic hypersonic vehicles with nonaffine-in-control character[J]. ISA Transactions, 2018, 80(9):127
    [45]路遥, 孙友, 路坤锋, 等. 近空间高超声速飞行器输入饱和抑制模糊自适应控制[J]. 宇航学报, 2018, 39(9):986 LU Yao, SUN You, LU Kunfeng, et al. Fuzzy adaptive control for near-space hypersonic vehicles with saturation restraint of inputs[J]. Journal of Astronautics, 2018, 39(9):986
    [46]BU Xiangwei, WU Xiaoyan, HUANG Jiaqi, et al. Robust estimation-free prescribed performance back-stepping control of air-breathing hypersonic vehicles without affine models[J]. International Journal of Control, 2016, 89(11): 2185
    [47]FAMULARO D I, VALASEK J, MUSE J A, et al. Observer-based feedback adaptive control for nonlinear hypersonic vehicles[C]//AIAA Guidance, Navigation, and Control Conference. Grapevine, Texas:AIAA, 2017:1492
    [48]FAMULARO D I, VALASEK J, MUSE J A, et al. Adaptive control of hypersonic vehicles using observer-based nonlinear dynamic inversion[C]// AIAA Guidance, Navigation, and Control Conference. Kissimmee, Florida:AIAA, 2018:843
    [49]XU H J, MIRMIRANI M, IOANNOU P A. Robust neural adaptive control of a hypersonic aircraft[C]// AIAA Guidance, Navigation, and Control conference and Exhibit. Austin, TX: AIAA,2003:5641
    [50]刘燕斌, 陆宇平. 基于H∞最优控制理论的高超音速飞机纵向逆控制[J]. 系统工程与电子技术, 2006, 28(12):1882 LIU Yanbin, LU Yuping. Longitudinal inversion control based on H∞ optimal control theory for hypersonic vehicle[J]. Systems Engineering and Electronics, 2006, 28(12):1882
    [51]王首斌. 高超音速飞行器非线性控制律设计方法研究[D]. 西安:西北工业大学, 2013 WANG Shoubin. Research on design method of nonlinear control law for a hypersonic vehicle[D]. Xi’an: Northwestern Polytechnical University, 2013
    [52]DA COSTA R R, CHU Q P, MULDER J A. Re-entry flight controller design using nonlinear dynamic inversion[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Montreal, Canada: AIAA, 2001:4219
    [53]刘海东, 包为民, 李惠峰, 等. 高超声速飞行器全局有限时间姿态控制方法[J]. 北京航空航天大学学报, 2016, 42(9):1864 LIU Haidong, BAO Weimin, LI Huifeng, et al. Attitude control method within finite time globally for hypersonic vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(9):1864
    [54]宗群, 张秀云, 邵士凯, 等. 非匹配不确定的弹性高超声速飞行器终端滑模控制[J]. 哈尔滨工业大学学报, 2017, 49(8):158 ZONG Qun, ZHANG Xiuyun, SHAO Shikai, et al. Terminal sliding mode control for flexible hypersonic vehicle with mismatched uncertainties[J]. Journal of Harbin Institute of Technology, 2017, 49(8):158
    [55]SACHAN K, PADHI R. State-constrained robust adaptive cruise control design for air-breathing hypersonic vehicles[C]//AIAA Guidance, Navigation, and Control Conference. Kissimmee, Florida: AIAA, 2018:847
    [56]张科, 杨文骏, 张明环, 等. 基于LESO的高超声速飞行器动态面控制[J]. 西北工业大学学报, 2018, 36(1):13 ZHANG Ke, YANG Wenjun, ZHANG Minghuan, et al. LESO based dynamic surface control for hypersonic flight vehicle[J]. Journal of Northwestern Polytechnical University, 2018, 36(1):13
    [57]XU Bin, WANG Danwei, ZHANG Youmin, et al. DOB-based neural control of flexible hypersonic flight vehicle considering wind effects[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11):8676
    [58]孙经广, 宋申民, 陈海涛, 等. 高超声速飞行器有限时间饱和跟踪控制[J]. 控制理论与应用, 2017, 34(10): 1349 SUN Jingguang, SONG Shenmin, CHEN Haitao, et al. Finite-time tracking control of the hypersonic vehicle with input saturation[J]. Control Theory & Applications, 2017, 34(10): 1349
    [59]SUN Jingguang, SONG Shenmin, WU Guanqun, et al. Fault-toterant track control of hypersonic vehicle based on fast terminal sliding mode[J]. Journal of Spacecraft and Rockets, 2017, 54(6):1304
    [60]SHTESSEL Y, HALL C, JACKSON M. Reusable launch vehicle control in multiple time scale sliding modes[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(6):1013
    [61]HALL C E, SHTESSEL Y B. RLV sliding mode control system using mode observers and gain adaptation[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Austin, Texas: AIAA, 2003:5437
    [62]XU H J, MIRMIRANI M D, IOANNOU P A. Adaptive sliding mode control design for a hypersonic flight vehicle[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(5):829
    [63]常亚菲, 姜甜甜. 高超声速再入飞行器的特征建模及自适应递推滑模控制[J]. 宇航学报, 2018, 39(8):889 CHANG Yafei, JIANG Tiantian. Characteristic modeling and adaptive recursive sliding mode control for hypersonic reentry vehicle[J]. Journal of Astronautics, 2018, 39(8):889
    [64]常晶, 周军. 一种基于时变干扰观测器的高超声速飞行器容错控制策略设计[J]. 控制与决策, 2018, 33(10):1893 CHANG Jing, ZHOU Jun. A FTC scheme for hypersonic vehicle based on adaptive disturbance observer[J]. Control and Decision, 2018, 33(10):1893
    [65]余朝军, 江驹, 甄子洋, 等. 高超声速飞行器弹性自适应控制方法[J]. 哈尔滨工程大学学报, 2018, 39(6): 1026 YU Chaojun, JIANG Ju, ZHEN Ziyang, et al. A novel resilient adaptive control scheme for hypersonic vehicles[J]. Journal of Harbin Engineering University, 2018, 39(6): 1026
    [66]骆长鑫,张东洋,雷虎民,等.输入受限的高超声速飞行器鲁棒反演控制[J]. 航空学报, 2018, 39(4):213 LUO Changxin, ZHANG Dongyang, LEI Humin, et al. Robust backstepping control of input-constrained hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):213
    [67]NIVSION S A, KHARGONEKAR P. A Sparse neural network approach to model reference adaptive control with hypersonic flight applications[C]//AIAA Guidance, Navigation, and Control Conference. Kissimmee, Florida: AIAA, 2018:842
    [68]ZONG Qun, WANG Jie, TIAN Bailing, et al. Quasi-continuous high-order sliding mode controller and observer design for flexible hypersonic vehicle[J]. Aerospace Science and Technology, 2013, 27(1):127
    [69]马宇, 蔡远利. 高超声速飞行器调度双模预测控制方法[J]. 控制与决策, 2017, 32(11): 2063 MA Yu, CAI Yuanli. Scheduled dual mode predictive control for hypersonic vehicles[J]. Control and Decision, 2017, 32(11):2063
    [70]GAUDIO J E, ANNASWAMY A M, LAVRESKY E. Adaptive control of hypersonic vehicles in the presence of rate limits[C]//AIAA Guidance, Navigation, and Control Conference. Kissimmee, Florida: AIAA, 2018:0846
    [71]ZONG Qun, WANG Fang, TIAN Bailing, et al. Robust adaptive dynamic surface control design for a flexible air-breathing hypersonic vehicle with input constraints and uncertainty[J]. Nonlinear Dynamics, 2014, 78(1):289
    [72]JOHNSON M D, CALISE A J, JOHNSON E N. Further evaluation of an adaptive method for launch vehicle flight control[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Providence, RI: AIAA, 2004:5016
    [73]BURKEN J J, LU P, WU Z, et al. Two reconfigurable flight-control design methods: robust servomechanism and control allocation[J]. Journal of Guidance Control Dynamics, 2001, 24(3):482
    [74]胡超芳, 陶晔, 高志飞, 等. 基于预测控制的高超声速飞行器容错控制器设计[J]. 控制与决策, 2017, 32(11):2085 HU Chaofang, TAO Ye, GAO Zhifei, et al. Fault tolerant controller design based on predictive control for hypersonic vehicles[J]. Control and Decision, 2017, 32(11):2085
    [75]XU Bin, SHI Zhongke, SUN Fuchun, et al. Barrier Lyapunov function based learning control of hypersonic flight vehicle with AOA constraint and actuator faults[J]. IEEE Transactions on Cybernetics, 2018(2):1
    [76]AN Hao, LIU Jianxing, WANG Changhong. Disturbance observer-based antiwindup control for air-breathing hypersonic vehicles[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3038
    [77]ROLLINS E, VALASEK J, MUSE J A, et al. Nonlinear adaptive dynamic inversion applied to a generic hypersonicvehicle[C]//AIAA Guidance, Navigation, and Control Conference. Boston, MA: AIAA, 2013:5234
    [78]穆凌霞, 余翔, 李平, 等. 自适应广义滑模观测器之状态估计和故障重构[J]. 控制理论与应用, 2017, 34(4):483 MU Lingxia, YU Xiang, LI Ping, et al. State estimation and fault reconstruction from an adaptive descriptor sliding mode observer[J]. Control Theory & Applications, 2017, 34(4):483
    [79]MU Lingxia, LI Leyao, YU Xiang, et al.Observer-based fault-tolerant control of hypersonic scramjet vehicles in the presence of actuator faults and saturation[J/OL]. International Journal of Robust and Nonlinear Control.(2017-12-07)[2018-09-10]. https://doi.org/10.1002/rnc.4004.DOI:10.1002/rnc.4004
    [80]DOMAN D B, NGO A D. Dynamic inversion-based adaptive/reconfigurable control of the X-33 on ascent[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(2):275
    [81]DAVIDSON J, LALLMAN F, MCMINN J, et al. Flight control laws for NASA’s Hyper-X research vehicle[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Portland, OR: AIAA, 1999:4124
    [82]MOOIJ E. Simple adaptive control system design trades[C]//AIAA Guidance, Navigation, and Control Conference. Grapevine, Texas: AIAA, 2017:1502
    [83]TIAN Bailing, FAN Wenru, ZONG Qun. Integrated guidance and control for reusable launch vehicle in reentry phase[J]. Nonlinear Dynamics, 2015, 80(1/2):397

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700