高寒湖滨湿地生长季生态系统碳交换对增温的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:RESPONSE OF ECOSYSTEM CARBON EXCHANGE TO WARMING DURING THE GROWING SEASON OF ALPINE LAKE WETLAND
  • 作者:刘娟 ; 陈克龙 ; 张乐乐
  • 英文作者:LIU Juan;College of Life and Geography Sciences,Qinghai Normal University;
  • 关键词:小泊湖 ; 高寒湖滨湿地 ; 净生态系统碳交换 ; 生态系统呼吸 ; 总生态系统生产力
  • 英文关键词:Xiaobo Lake;;Alpine lake wetlands;;Net ecosystem carbon exchange;;Ecosystem respiration;;Gross ecosystem productivity
  • 中文刊名:QHCY
  • 英文刊名:Qinghai Prataculture
  • 机构:青海师范大学生命与地理科学学院;青海省自然地理与环境过程重点实验室;
  • 出版日期:2018-12-24
  • 出版单位:青海草业
  • 年:2018
  • 期:v.27;No.108
  • 基金:国家自然科学基金(41661023);; 青海省科技计划项目(2017-ZJ-782)
  • 语种:中文;
  • 页:QHCY201804002
  • 页数:8
  • CN:04
  • ISSN:63-1044/S
  • 分类号:4-10+24
摘要
全球平均气温的不断上升对陆地生态系统的碳收支产生了深远的影响。本研究基于LI-6400便携式光合仪和密闭箱式法,并通过设置开顶箱(OTCS)增温装置来模拟增温状态,研究了2017青海湖流域的小泊湖高寒湖滨湿地7~9月净生态系统碳交换(NEE)、生态系统呼吸(ER)、总生态系统生产力(GEP)对增温的响应。研究结果表明:1) NEE、ER、GEP均表现为明显的日变化和月变化特征,且在整个研究阶段生态系统表现为碳汇; 2)增温对NEE、GEP抑制作用明显,对ER的影响较小,增温处理下的生态系统碳交换与对照相比较弱,从而降低了整个湿地生态系统的碳汇能力。
        The global average temperature has a profound impact on the carbon budget of terrestrial ecosystems.This study was based on the LI-6400 portable photosynthesis apparatus and closed box method,and simulated the state of temperature increase by setting up an open-top box( OTCS) temperature-increasing device. From July to September in 2017,the study was conducted on the lakeshore wetland of Xiaobo Lake in the Qinghai Lake Basin,to explore ecosystem carbon exchange( NEE),ecosystem respiration( ER),gross ecosystem productivity( GEP) response to warming. The results showed that: 1) NEE,ER and GEP showed obvious diurnal and monthly variations,and the ecosystem showed carbon sequestration throughout the study period; 2) warming had a significant inhibitory effect on NEE and GEP,less effect on the ER. And the ecosystem carbon exchange under the condition of warming is weaker than that of the control,thus reducing the carbon sequestration capacity of the entire wetland ecosystem.
引文
[1]Schneider S H. The greenhouse effect:science and policy[J]. Science,1989,243(4892):771~81.
    [2]Paeker D E,Jones P D,Folland C K,et al. Interdecadal changes of surface temperature since the late nineteenth century[J]. Journal of Geophysical Research Atmospheres 1994,99(D7):14373~14399.
    [3]彭飞,薛娴,尤全刚.模拟增温对生态系统碳循环影响研究进展[J].中国沙漠,2014,34(05):1285~1292.
    [4]Luo Y Q. Terrestrial carbon-cycle feedback to climate warming[J]. Annual Review of Ecology Evolution&Systematics,2007,38(38):683~712.
    [5]Brient F,Bony S. Interpretation of the positive low-cloud feedback predicted by a climate model under global warming[J].Climate Dynamics,2012,40(9-10):2415~2431.
    [6]李英年,孙晓敏,赵新全,等.青藏高原金露梅灌丛草甸净生态系统CO2交换量的季节变异及其环境控制机制[J].中国科学,D辑:地球科学,2006,36(S1):163~173.
    [7]乔春连,李婧梅,王基恒,等.青藏高原高寒草甸生态系统CO2通量研究进展[J].山地学报,2012,30(02):248~255.
    [8]闫巍,张宪洲,石培礼,等.青藏高原高寒草甸生态系统CO2通量及其水分利用效率特征[J].自然资源学报,2006,21(05):756~767.
    [9]李英年,赵亮,赵新全,等. 5年模拟增温后矮嵩草草甸群落结构及生产量的变化[J].草地学报,2004,12(03):236~239.
    [10]元伟伟,牛海山,汪诗平,等.增温对青藏高原高寒草甸生态系统固碳通量影响的模拟研究[J].生态学报,2012,32(06):1713~1722.
    [11]程雷星,陈克龙,汪诗平,等.青海湖流域小泊湖湿地植物多样性[J].湿地科学,2013,11(04):460~465.
    [12]魏俊奇,李小雁,蒋志云,等.基于EMI的小泊湖退化湿地土壤盐分的空间分布[J].水土保持学报,2016,30(06):284~288.
    [13]王恒生,刁治民,陈克龙,等.青海湖流域小泊湖湿地土壤微生物数量及影响因子[J].中国农业大学学报,2015,20(06):189~197.
    [14]傅伯杰,牛栋,赵士洞.全球变化与陆地生态系统研究:回顾与展望[J].地球科学展2005,20(05):556~560.
    [15]Chen J,Luo Y,Xia J,et al. Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau[J]. Agricultural and Forest Meteorology,2016,220(220):21~29.
    [16]Wang X,Liu L,Piao S,et al. Soil respiration under climate warming:differential response of heterotrophic and autotrophic respiration[J]. Global Change Biology,2014,20(10):3229~3237.
    [17]Cox P M,Betts R A,Jones C D,et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J]. Nature,2000,408(6809):184~187.
    [18]Xia J,Niu S,Wan S. Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe[J]. Global Change Biology,2009,15(6):1544~1556.
    [19]徐世晓,赵新全,李英年,等.青藏高原高寒灌丛生长季和非生长CO2通量分析[J].中国科学,D辑:地球科学,2004,(S2):118~124.
    [20]雷延智.青海湖流域小泊湖湿地的形成及其环境特征[D].西宁:青海师范大学,2016.
    [21]王恒生,刁治民,陈克龙,等.青海湖流域小泊湖湿地土壤微生物数量及影响因子[J].中国农业大学学报,2015,20(06):189~197.
    [22]程雷星,陈克龙,杨仕兵.青海湖流域小泊湖湿地植物种间关系研究[J].干旱区地理,2014,37(05):1005~1011.
    [23]毛亚辉.青藏高原高寒沼泽草甸土壤呼吸动态变化及对增温的响应—以瓦颜山为例[D].西宁:青海师范大学,2016.
    [24]Ren F,Zhou H K,Zhao X Q,et al. Influence of simulated warming using OTC on physiological–biochemical characteristics of Elymus nutans,in alpine meadow on Qinghai-Tibetan plateau[J]. Acta Ecologica Sinica,2010,30(3):166~171.
    [25]孙丽娜.紫花苜蓿生态系统碳水交换特征与水分利用效率研究[D].太原:山西大学,2012.
    [26]朱军涛,陈宁,张扬建,等.不同幅度的试验增温对藏北高寒草甸净生态系统碳交换的影响[J].植物生态学报,2016,40(12):1219~1229.
    [27]谷蕊.模拟气候变化对内蒙古克氏针茅草原生态系统及其碳交换的影响[D].呼和浩特:内蒙古大学,2015.
    [28]Oberbauer S F,Tweedie C E,Welker J M. Tundra CO2fluxes in response to experimental warming across latitudinal and moisture gradients[J]. Ecological Monographs,2007,77,221~238.
    [29]武倩,韩国栋,王瑞珍,等.模拟增温对草地植物、土壤和生态系统碳交换的影响[J].中国草地学报,2016,38(4):105~114.
    [30]郭亚奇,阿里穆斯,高清竹,等.灌溉条件下藏北紫花针茅光合特性及其对温度和CO2浓度的短期响应[J].植物生态学报,2011,35(03):311~321.
    [31]李冰,葛世栋,徐田伟,等.冬季放牧对高寒草甸生长季NEE的影响[J].西南农业学报,2015,28(01):397~402.
    [32]吴琴,曹广民,胡启武,等.矮嵩草草甸植被-土壤系统CO2的释放特征[J].资源科学,2005,27(02):96~102.
    [33]Niu S,Sherry R,Zhou X,et al. Ecosystem carbon fluxes in response to warming and clipping in a tallgrass prairie[J]. Ecosystems,2013,16(6):948~961.
    [34]李军祥,曾辉,朱军涛,等.藏北高原高寒草甸生态系统呼吸对增温的响应[J].生态环境学报,2016,25(10):1612~1620.
    [35]朱玲玲,戎郁萍,王伟光,等.放牧对草地生态系统CO2净气体交换影响研究概述[J].草地学报,2013,21(01):3~10.
    [36]徐世晓,赵新全,李英年,等.青藏高原高寒灌丛CO2通量日和月变化特征[J].科学通报,2005,50(05):481~485.
    [37]李冰,葛世栋,徐田伟,等.放牧强度对青藏高原高寒草甸净生态系统交换量的影响[J].草业科学,2014,31(07):1203~1210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700