氯碱电解槽内压力波动的混沌分析及流型识别
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Chaotic analysis of pressure fluctuation and identification of flow regime in chlor-alkali electrolyzer
  • 作者:张丽 ; 由钢 ; 乔霄峰 ; 许光文 ; 刘国桢 ; 刘云义
  • 英文作者:ZHANG Li;YOU Gang;QIAO Xiaofeng;XU Guangwen;LIU Guozhen;LIU Yunyi;School of Chemical Engineering, Shenyang University of Chemical Technology;Bluestar Beijing Chemical Machinery Corporation Limited;State Key Multi-phase Reaction Laboratory of Institute of Process Engineering, Chinese Academy of Sciences;Bluestar Shenyang Research Institute of Light Industry Machinery;
  • 关键词:氯碱工业 ; 电解 ; 化学反应器 ; 气液两相流 ; 压力信号 ; 混沌 ; 流型
  • 英文关键词:chlor-alkali industry;;electrolysis;;chemical reactors;;gas-liquid two-phase flow;;pressure signal;;chaos;;flow pattern
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:沈阳化工大学化学工程学院;蓝星(北京)化工机械有限公司;中国科学院过程工程研究所多相复杂系统国家重点实验室;蓝星沈阳轻工机械设计研究所;
  • 出版日期:2019-03-15
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:多相复杂系统国家重点实验室开放课题项目(MPCS2017D11);; 辽宁省自然科学基金项目(201602596);; 辽宁省博士科研启动基金项目(201601195);; 沈阳市科技计划项目(17-231-1-23)
  • 语种:中文;
  • 页:HGSZ2019S1005
  • 页数:10
  • CN:S1
  • ISSN:11-1946/TQ
  • 分类号:41-50
摘要
为研究氯碱电解槽内气液两相流动的压力波动特性和流型特点,对冷模电解槽阳极室内循环板上开口处的压力信号进行了混沌特性分析;利用高速摄像仪照相法及Kolmogorov熵下降法对流动形态进行了识别,绘制了流型图;利用流型图对不同电流密度下的两相流型进行了判定。结果表明,电解槽压力信号的吸引子具有分数维数,当电流密度大于6 kA·m~(-2)时,Lyapunov指数大于0,说明电解槽内两相流动具有混沌特性;对于测压点位置及电解槽下部,当电流密度小于5 kA·m~(-2)时,分别为射流充分发展段和孤立气泡流;电流密度为5~8kA·m~(-2)时为射流过渡段和合并气泡流;电流密度大于8 kA·m~(-2)时为射流的初始段和合并气泡流。
        In order to clarify the pressure fluctuation characteristics and flow patterns of the gas-liquid two-phase flow in the chlor-alkali electrolyzer, the pressure signals at the upper opening of the recirculation plate in the anode chamber of a cold-model electrolyzer were analyzed by using chaos method. The flow patterns were identified by the Kolmogorov entropy descending method and the pictures taken by a high-speed camera. The flow pattern maps were drawn. The flow patterns under different current densities were determined. The results show that, the attractors of pressure signal of electrolyzer have fractional dimension. The values of Lyapunov exponent are greater than 0 when the current density exceeds 6 kA·m~(-2). These results demonstrate the gas-liquid two-phase flow in the electrolyzer has chaotic characteristics. For the position of the upper opening of the circulation plate and the lower section of the electrolyzer, the fully developed section of the jet flow and the isolated bubble flow appear when the current density is less than 5 kA·m~(-2). The transition section of the jet flow and combined bubble flow appear when the current density is 5-8 kA·m~(-2). The initial section of the jet flow and combined bubble flow appear when the current density is greater than 8 kA·m~(-2).
引文
[1]赵国瑞.高电流密度自然循环复极式离子交换膜电解槽在氯碱工业的应用[J].氯碱工业, 2007,(11):11-18.Zhao G R. Application of high current density natural circulation bipolar-type ion-exchange membrane electrolyzers[J]. ChlorAlkali Industry, 2007,(11):11-18.
    [2]周云龙,陈旭,郭新田,等.三面加热窄矩形通道内气液两相流流型研究[J].原子能科学技术, 2018, 52(7):1262-1267.Zhou Y L, Chen X, Guo X T, et al. Study of gas-liquid two-phase flow pattern in three-side heating narrow rectangular channel[J].Atomic Energy Science and Technology, 2018, 52(7):1262-1267.
    [3]金光远,韩月阳.矩形通道内泡状流-弹状流转换边界判定方法[J].工程热物理学报, 2017, 38(10):2208-2212.Jin G Y, Han Y Y. Criterion for predicting transition boundary from bubbly flow to slug flow in rectangular channels[J]. Journal of Engineering Thermophysics, 2017, 38(10):2208-2212.
    [4]闫超星,阎昌琪,孙立成.倾斜窄矩形通道内弹状流特性的实验研究[J].高校化学工程学报, 2015, 29(3):551-556.Yan C X, Yan C Q, Sun L C. Experimental investigation on characteristics of slug flow in a vertical narrow rectangular channel[J]. J. Chem. Eng. Chinese Univ., 2015, 29(3):551-556.
    [5] Choi C W, Yu D I, Kim M H. Adiabatic two-phase flow in rectangular microchannels with different aspect ratios(Ⅰ):Flow pattern, pressure drop and void fraction[J]. Int. J. Heat Mass Transfer, 2011, 54(1/2/3):616-624.
    [6] Wilmarth T, Ishii M. Two-phase flow regimes in narrow rectangular vertical and horizontal channels[J]. International Journal of Heat&Mass Transfer, 1994, 37(12):1749-1758.
    [7] Wang J F, Huang Y P, Wang Y L. Photographic study on twophase flow patterns of water in a single-side heated narrow rectangular channel[J]. J. Eng. Gas Turbines Power, 2011, 133(5):052907.
    [8]杨丽辉,陶乐仁,黄理浩,等.竖直矩形窄通道内水沸腾换热的流型研究[J].热能动力工程, 2014, 29(6):622-626.Yang L H, Tao L R, Huang L H, et al. Study of the water boiling heat exchange flow pattern in a vertical rectangular narrow channel[J]. Journal of Engineering for Thermal Energy&Power,2014, 29(6):622-626.
    [9] Xu J L, Cheng P, Zhao T S. Gas-liquid two-phase flow regimes in rectangular channels with mini/micro gaps[J]. International Journal of Multiphase Flow, 1999, 25(3):411-432.
    [10] Huang L, Li G, Tao L. Experimental investigation on the heat transfer characteristics and flow pattern in vertical narrow channels heated from one side[J]. Heat&Mass Transfer, 2016, 52(7):1343-1357.
    [11] Hibiki T, Mishima K. Flow regime transition criteria for upward two-phase flow in vertical narrow rectangular channels[J].Nuclear Engineering and Design, 2001, 203(2):117-131.
    [12] Wongwises S, Pipathattakul M. Flow pattern, pressure drop and void fraction of two-phase gas-liquid flow in an inclined narrow annular channel[J]. Experimental Thermal&Fluid Science, 2006,30(4):345-354.
    [13] Wang J, Huang Y, Wang Y, et al. Visualized investigation on flow regimes for vertical upward steam-water flow in a heated narrow rectangular channel[J]. Annals of Nuclear Energy, 2012, 45(1):115-123.
    [14] Julia J E, Ozar B, Jeong J J, et al. Flow regime development analysis in adiabatic upward two-phase flow in a vertical annulus[J]. International Journal of Heat&Fluid Flow, 2011, 32(1):164-175.
    [15]刘明言,胡宗定.气液两相单孔鼓泡过程的混沌分析[J].化工学报, 2000, 51(3):338-343.Liu M Y, Hu Z D. Chaos bubbling in gas-liquid two-phase bubble column with a single orifice[J]. Journal of Chemical Industry and Engineering(China),2000, 51(3):338-343.
    [16] Wu J J, Wang D, Li L H, et al. Characterization of flow regimes in bubble columns through CCF analysis of pressure fluctuations[J].Chemical Engineering&Technology, 2010, 28(10):1109-1113.
    [17]金宁德,郑桂波,胡凌云.垂直上升管中气液两相流电导波动信号的混沌特性分析[J].地球物理学报, 2006, 49(5):1552-1560.Jin N D, Zheng G B, Hu L Y. Chaotic characteristic analysis of conductance signals of gas-liquid two-phase flow in vertical upward pipe[J].Chinese J. Geophys., 2006, 49(5):1552-1560.
    [18] Zhu H Y, Li Z X, Yang X T, et al. Flow regime identification for upward two-phase flow in helically coiled tubes[J]. Chemical Engineering Journal, 2016, 308(1):606-618.
    [19] Kim T H, Chalgeri V S, Yoon W. Visual observations of flow patterns in downward air-water two-phase flows in a vertical narrow rectangular channel[J]. Annals of Nuclear Energy, 2018,114:384-394.
    [20] Wambsganss M W, Jendrzejczyk J A, France D M. Determination and characteristics of the transition to two-phase slug flow in small horizontal channel[J]. Journal of Fluids Engineering, 1994,116:140-146.
    [21] Cai Y, Wambsganss M W, Jendrzejczyk J A. Application of chaos theory in identification of two-phase flow patterns and transitions in a small, horizontal, rectangular channel[J]. Journal of Fluids Engineering, 1996, 118(2):383-390.
    [22]白博峰,郭烈锦,陈学俊.空气水两相流压力波动现象非线性分析[J].工程热物理学报, 2001, 22(3):359-362.Bai B F, Guo L J, Chen X J. Nonlinear analysis on pressure fluctuation phenomena of air-water two-phase flow[J]. Journal of Engineering Thermophysics, 2001, 22(3):359-362.
    [23]孙斌,周云龙.水平管内空气-水两相流流型的混沌特征[J].哈尔滨工业大学学报, 2006, 38(11):1963-1967.Sun B, Zhou Y L. Characterization of flow regimes of air-water two-phase flow in horizontal pipe using chaotic analysis[J].Journal of Harbin Institute of Technology, 2006, 38(11):1963-1967.
    [24]金宁德,聂向斌,任英玉,等.基于Kolmogorov熵时间序列分析的垂直上升管中油水两相流流型表征[J].化工学报, 2003, 54(7):936-941.Jin N D, Nie X B, Ren Y Y, et al. Characterization of oil/water two-phase flow patterns in vertical upward pipes based on Kolmogorov entropy time series analysis[J]. Journal of Chemical Industry and Engineering(China),2003, 54(7):936-941.
    [25] Letzel H M, Schouten J C, Krishna R, et al. Characterization of regimes and regime transitions in bubble columns by chaos analysis of pressure signals[J]. Chemical Engineering Science,1997, 52(24):4447-4459.
    [26] Ruzicka M C, Drahos J, Zahradnlk J, et al. Intermittent transition from bubbling to jetting regime in gas-liquid two phase flows[J].Multiphase Flow, 1997, 23(4):671-682.
    [27] Taofeeq H, Al-Dahhan M. Comparison between the new mechanistic and the chaos scale-up methods for gas-solid fluidized beds[J]. Chinese Journal of Chemical Engineering, 2018,26(6):1401-1411.
    [28]程易,魏飞,王振宇,等.高速气固流化床局部瞬态行为混沌分析[J].化工学报, 2000, 51(2):169-175.Cheng Y, Wei F, Wang Z Y, et al. Chaotic analysis of transient behavior in high-velocity fluidized beds[J]. Journal of Chemical Industry and Engineering(China), 2000, 51(2):169-175.
    [29] Nedeltchev S, Aradhya S, Zaid F, et al. Flow regime identification in three multiphase reactors based on Kolmogorov entropies derived from gauge pressure fluctuations[J]. Journal of Chemical Engineering of Japan, 2012, 45(9):757-764.
    [30]张丽,戴俊,刘秀明,等.氯碱工业离子膜电解槽内气液两相流动特性[J].高校化学工程学报,2017, 31(1):21-30.Zhang L, Dai J, Liu X M, et al. Gas-liquid two-phase flow characteristics in a ion-exchange membrane electrolysis cell of chlor-alkali industry[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(1):21-30.
    [31]岳雯婷,张丽,刘秀明,等.电流密度对氯碱工业离子膜电解槽传递特性影响[J].化工学报, 2015, 66(3):915-923.Yue W T, Zhang L, Liu X M, et al. Influence of current density on transfer characteristics in electrolysis cell of chlor-alkali industry[J]. CIESC Journal, 2015, 66(3):915-923.
    [32]肖楠,金宁德.基于混沌吸引子形态特性的两相流流型分类方法研究[J].物理学报, 2007, 56(9):5149-5157.Xiao N, Jin N D. Research on flow pattern classification method of two-phase flow based on chaotic attractor morphological characteristic[J]. Acta Physica Sinica, 2007, 56(9):5149-5157.
    [33] Zhang L, Yue C J, Kang J Z, et al. Influence of separation chamber structure on the performance of the anode chamber of a chlor-alkali cell[J]. Journal of the Electrochemical Society, 2017,164(4):E29-E35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700