UHVAC同塔双回输电线路表面场强分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Surface Electric Field of UHVAC One-tower Double-circuit Transmission Line
  • 作者:马爱清 ; 林鹏远 ; 迟杰 ; 杨喆
  • 英文作者:MA Aiqing;LIN Pengyuan;CHI Jie;YANG Zhe;College of Electrical Engineering,Shanghai University of Electric Power;Yantai Power Supply Company;
  • 关键词:特高压交流 ; 同塔双回输电线路 ; 改进模拟电荷法 ; 分裂导线 ; 表面场强 ; 多步寻优
  • 英文关键词:ultra-high voltage alternating current;;one-tower double-circuit transmission line;;revised charge simulation method;;split conductor;;surface electric field;;multi-step optimization
  • 中文刊名:DLZD
  • 英文刊名:Proceedings of the CSU-EPSA
  • 机构:上海电力学院电气工程学院;烟台市供电公司;
  • 出版日期:2019-06-15
  • 出版单位:电力系统及其自动化学报
  • 年:2019
  • 期:v.31;No.185
  • 语种:中文;
  • 页:DLZD201906026
  • 页数:8
  • CN:06
  • ISSN:12-1251/TM
  • 分类号:147-154
摘要
为了研究特高压同塔双回输电线路分裂导线表面电场分布,本文基于改进的模拟电荷法,通过多步寻优找到模拟电荷在对应子导线内的最佳位置并建模,然后编程计算出分裂导线表面场强。利用该方法计算了浙江-上海段特高压交流输电线路分裂导线的表面场强,并研究了分裂数、子导线半径等对其影响。计算结果表明,本文方法与传统模拟电荷法相比更为准确,可将电位误差控制在0.05%以内;计算得该线路表面最大场强为1 783.5 kV/m,小于晴天和云雾条件下的起晕场强,但大于雨天条件下的起晕场强;适当增加导线分裂数或增加分裂导线的子导线半径,可明显降低导线表面最大场强。
        To study the surface electric field(EF)distribution of ultra-high voltage(UHV)one-tower double-circuit split conductors,a method is proposed based on revised charge simulation method(CSM),which can find the best place of simulated charge on the corresponding sub-conductor by multi-step optimization and modeling. Afterwards,the surface EF of split conductors are calculated through programming. This revised method is used to calculate the surface EF of split conductors on Zhejiang-Shanghai UHVAC transmission line,and the EF's influencing factors,such as the number of bundles and sub-conductor radius,are studied. Calculation results show that the proposed method is more accurate than the traditional CSM,and it can restrain the voltage calibration error within 0.05%;the maximum surface EF of this line can reach 1 783.5 kV/m,which is lower than that of corona inception on sunny and cloudy/foggy days,but higher than that on rainy days;by increasing the number of bundles to 10 and enlarging the radius of sub-conductors to 0.019 2 m,the maximum surface EF values can be reduced by 14.9% and 12.4%,respectively.
引文
[1]刘振亚.特高压电网[M].北京:中国经济出版社,2005.
    [2]王廷华,王亚伟,段基梅,等(Wang Tinghua,Wang Yawei,Duan Jimei,et al).高压输电线路参数对计及电晕放电的电场强度的影响(Effect of high-voltage transmission line parameters on the electric field intensity considering the corona discharge)[J].高压电器(High Voltage Apparatus),2011,47(6):77-82,86.
    [3]郑海涛,贾云辉,张小文,等(Zhen Haitao,Jia Yunhui,Zhang Xiaowen,et al). 750 kV变电站内导线表面电场分布数值分析(Numerical analysis of electric field distribution on conductor surface in 750 kV substation)[J].电力系统及其自动化学报(Proceedings of the CSU-EPSA),2017,29(1):123-127.
    [4]张广洲(Zhang Guangzhou).高压直流输电工程电磁环境研究(Study on EM Environment of HVDC Transmission Projects)[D].武汉:华中科技大学电气与电子工程学院(Wuhan:College of Electrical&Electronic Engineering,Huazhong University of Science and Technology),2006.
    [5]王珍雪,马力,叶会英,等(Wang Zhenxue,Ma Li,Ye Huiying,et al).模拟电荷法在UHVDC输电线路中的优化及应用(Optimization and application of charge simulation method for UHVDC transmission lines)[J].高压电器(High Voltage Apparatus),2016,52(1):15-20,26.
    [6] Takuma T,Ikeda T,Kawamoto T. Calculation of ION flow fields of HVDC transmission lines by the finite element method[J]. IEEE Trans on Power Apparatus and Systems,1981,100(12):4802-4810.
    [7] Janischewskyj W,Gela G. Finite element solution for electric fields of coronating DC transmission lines[J]. IEEE Trans on Power Apparatus and Systems,1979,98(3):1000-1002.
    [8]关海爽,马文阁(Guan Haishuang,Ma Wenge).电磁场数值计算新方法的研究(Research in new methods on numerical computations of electromagnetic fields)[J].辽宁工学院学报(Journal of Liaoning Institute of Technology),2006,26(4):230-233,245.
    [9]张逸成(Zhang Yicheng).试论电磁场数值计算的现状和进一步发展的重要性(The importance of the EMF actuality and development)[J].低压电器(Journal of Lowvoltage Apparatus),1991(2):9-12.
    [10]吕殿利(LüDianli).特高压电场的数值计算与全局优化(Numerical Calculation and Global Optimization on Electric Field Intensity of Ultra-High Voltage)[D].天津:河北工业大学电气工程学院(Tianjin:School of Electrical Engineering,Hebei University of Technology),2011.
    [11]谈克雄,薛家麒.高压静电场数值计算[M].北京:水利电力出版社,1990.
    [12]封滟彦(Feng Yanyan).超高压输电线路电磁场的仿真研究(Study on Simulation of Electromagnetic Fields Caused by Extra High Voltage)[D].重庆:重庆大学电气工程学院(Chongqing:College of Electrical Engineering,Chongqing University),2004.
    [13] Liu Xiaoming,Cao Yundong,Wang Erzhi. Numerical simulation of electric field with open boundary using intelligent optimum charge simulation method[J]. IEEE Trans on Magnetics,2006,42(4):1159-1162.
    [14] Garcia J A G,Singer H. The consideration of singularities in the numerical calculation of electrostatic field by means of the surface charge method[J]. Electrical Engineering,1997,80(4):215-219.
    [15] Bachmann B. Models for computation of mixed fields with charge method[C]//IEEE 3rd ISH. Millan,Italy,1979.
    [16]李维波. MATLAB在电气工程中的应用[M].北京:中国电力出版社,2006.
    [17]吴天明,赵新为,刘建存,等. MATLAB电力系统设计与分析[M]. 3版.北京:国防工业出版社,2004.
    [18]白俊平(Bai Junping). MATLAB/Simulink及电力系统仿真(MATLAB/Simulink and Power System Simulation)[J].科技资讯(Science and Technology Information),2008(3):55-55,57.
    [19]董钱江,付昭棣(Dong Qianjiang,Fu Zhaoli).集肤效应和空心导线(Skin effect and hollow conductor)[J].电工技术(Electric Engineering),1987(2):30-30.
    [20]能源部东北电力设计院.电力工程高压送电线路设计手册[M].北京:北京水利电力出版社,1991.
    [21] Peek F W. The law of corona and the dielectric strength of air-IV the mechanism of corona formation and loss[J].IEEE Trans on the American Institute of Electrical Engineers,2009,XLVI(6):1009-1024.
    [22]邱硫昌.高电压工程[M].西安:西安交通大学出版社,1995.
    [23]阮江军,喻剑辉,张启春,等(Ruan Jiangjun,Yu Jianhui,Zhang Qichun,et al). 1 100 kV架空线周围的工频电场(The power frequency electric field under 1 100 kV overhead lines)[J].高电压技术(High Voltage Engineering),1999,25(4):29-31,34.
    [24] Bian Xingming,Wang Liming,MacAlpine J M K,et al.Positive corona inception voltages and corona currents for air at various pressures and humidities[J]. IEEE Trans on Dielectrics and Electrical Insulation,2010,17(1):63-70.
    [25] Olsen R G,Phillips D B,Pedrow P D. Extrapolation of a corona streamer onset criterion to general convex conductor surface[C]//10th International Symposium on High Voltage Engineering. 1997.
    [26]谢万春,谢烈阳(Xie Wanchun,Xie Lieyang).电力导线截面的选择(The choice of electric conductor cross section)[J].中国电力企业管理(China Power Enterprise Management),2007(16):63-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700