考虑静气动弹性影响的客机机翼气动/结构一体化设计研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Aerodynamic/structural integrated design for aircraft wing with static aeroelasticity effect
  • 作者:杨体浩 ; 白俊强 ; 辛亮 ; 孙智伟 ; 史亚云
  • 英文作者:YANG Tihao;BAI Junqiang;XIN Liang;SUN Zhiwei;SHI Yayun;College of Aeronautics,Northwestern Polytechnical University;
  • 关键词:多学科 ; 空气动力学 ; 结构 ; 全速势方程 ; 微分进化算法 ; 静气动弹性
  • 英文关键词:multidisciplinary;;aerodynamics;;structure;;full potential equation;;differential evolution algorithm;;static aeroelasticity
  • 中文刊名:KQDX
  • 英文刊名:Acta Aerodynamica Sinica
  • 机构:西北工业大学航空学院;
  • 出版日期:2017-08-15
  • 出版单位:空气动力学学报
  • 年:2017
  • 期:v.35;No.165
  • 语种:中文;
  • 页:KQDX201704016
  • 页数:12
  • CN:04
  • ISSN:51-1192/TK
  • 分类号:150-161
摘要
针对跨声速客机气动/结构一体化设计问题,建立了考虑静气动弹性影响的气动/结构一体化优化设计方法,并针对现代跨声速民用客机开展了气动/结构一体化设计研究。数值评估选择全速势方程加附面层修正,气弹分析采用基于RBF插值技术的松耦合分析方法,优化方法使用改进的微分进化算法。通过对CRM和DLR-F6标模进行计算并与实验数据对比,验证了采用的气动数值评估手段和静气动弹性分析方法可靠性。利用建立的优化设计方法对跨声速客机机翼进行了分别以扭转角分布和剖面翼型为设计变量的考虑静气动弹性影响的气动/结构一体化设计,航程分别提高了5.63%和3.05%。航程的提高主要得益于机翼的载荷分布和结构厚度分布的改变,以扭转角分布为设计变量的优化设计以2.56%的结构重量损失获得了6.53%的升阻比的提高,以剖面翼型外形为设计变量的优化重量减小了3.56%同时升阻比提高了1.53%。
        For the problem of aerodynamic/structural integrated design about a transonic aircraft,an aerodynamic/structural integrated design method is developed in consideration of the influence of static aeroelasticity.The numerical evaluation method in the integrated design is established on the basis of full potential equations and boundary layer correction.A loose coupled method based on three dimension radial basis functions(RBF)interpolation is adopted to analyze the static aeroelasticity. An improved differential evolution algorithm is chosen as the optimization algorithm for the design.The comparisons between the numerical results and the experiment data for benchmark models CRM and DLR-F6 show that the numerical technology and the loose coupled static aeroelasticity analysis method are reliable.By respectively choosing twist angle distributions and airfoil sections as the design parameter,together with the static aeroelasticity effect taken into account,the optimization method established is used in aerodynamic/structural integrated design for a transonic aircraft.Due to these two optimizations,the flying ranges are increased by 5.63% and 3.05%,respectively.The improvement in range owes to the distribution changes in the wing load and the structural thickness.In the twist distribution design case,6.53% improvement in lift-drag ratio is obtained at the expense of 3.2% increase in the structural weight.However,in the airfoil sections design case,the lift-drag ratiois increased by 1.53%,and the structural weight is decreased by 3.56%.The design results show that the integrated optimization design method constructed in this paper is reasonable and practical.
引文
[1]Ma T L,Ma D L,Zhang H,et al.Aerodynamic characteristic analysis of high-aspect ratio elastic wing[J].Journal of Beijing University of Aeronautics and Astronautics,2007,33(7):781-784(in Chinese)马铁林,马东立,张华,等.大展弦比柔性机翼气动特性分析[J].北京航空航天大学学报,2007,33(7):781-784.
    [2]Nguyen N.NASA innovation fund 2010 project:elastically shaped future air vehicle concept[R].2010.
    [3]Cone C D.The theory of induced lift and minimum induced drag of nonplanar lifting systems[R].National Aeronautics and Space Administration,1962.
    [4]Dong B,Zhang X D,Li Z N,et al.Integrated aerodynamic/structural design optimization for wing oftrunk liner[J].Journal of Beijing University of Aeronautics and Astronautics,2002,28(4):435-437.(in Chinese)董波,张晓东,郦正能,等.干线客机机翼气动/结构综合设计研究[J].北京航空航天大学学报,2002,28(4):435-437.
    [5]Hu J,Wang R H,Wang W J,et al.Multidisciplinary optimization of transport wing aerodynamic/structural integrated design[J].Journal of Nanjing University of Aeronautics&Astronautics,2012,44(4):458-463.(in Chinese)胡婕,王如华,王稳江,等.客机机翼气动/结构多学科优化方法[J].南京航空航天大学学报,2012,28(4):458-463
    [6]Zhao T,Zhang Y F,Chen H X.Multi-objective aerodynamicstructural optimization of supercritical wing of wide body aircraft[C]//54th AIAA Aerospace Sciences Meeting,2016.
    [7]Zuo Y T,Lu J J,Chen G,et al.Efficient multidisciplinary aerodynamic optimization design based on discrete adjoint method[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,2013.
    [8]Martins J,Kennedy G,Kenway G K.High aspect ratio wing design:optimal aerostructural tradeoffs for the next generation of materials[C]//Aerospace Sciences Meeting.2014.
    [9]Kenway G K W,Martins J R R A.Multi-point high-fidelity aerostructural optimization of a transport aircraft configuration[J].Journal of Aircraft,2014,51(1):144-160.
    [10]Yang T H.Application of optimized design in wide-body aircraft aerodynamic design[D].Xi’an:School of Aeronautics,Northwestern Polytechnical University,2014.(in Chinese)杨体浩.优化设计在宽体客机气动设计中的应用研究[D].西安:西北工业大学航空学院,2014.
    [11]Chen A W,Curtin M,Carlson R B,et al.TRANAIR applications to engine/airframe integration[J].Journal of Aircraft,1990,27(8):716-721.
    [12]Zhou T,Zhang M,Li Y L,et al.Supercritical airfoil design based on full potential equations[J].Aeronautical Computing Technique,2009,39(4):58-64.(in Chinese)周涛,张淼,李亚林,等.基于全速势方程的超临界翼型设计[J].航空计算技术,2009,39(4):58-64.
    [13]Brodersen O,Crippa S.RANS-based aerodynamic drag and pitching moment predictions for the common research model[M].New Results in Numerical and Experimental Fluid Mechanics IX.Springer International Publishing,2014:485-493.
    [14]Cui P,Han J L.Investigation of nonlinear aeroelastic analysis using CFD/CSD[J].Acta Aeronautica et Astronautica Sinica,2010,31(3):482-486.(in Chinese)崔鹏,韩景龙.基于CFD/CSD的非线性气动弹性分析方法[J].航空学报,2010,31(3):482-486.
    [15]Allen C B,Rendall T C S.Unified approach to CFD-CSD interpolation and mesh motion using radial basis functions[C]//25th AIAA Applied Aerodynamics Conference.Miami:AIAA2007-3804.
    [16]Yang G W.Recent progress on computational aeroelasticity[J].Advances In Mechanics,2009,39(4):406-420.(in Chinese)杨国伟.计算气动弹性若干研究进展[J].力学进展,2009,39(4):406-420.
    [17]Burner A W,Goad W K,Massey E A.Wing deformation measurements of the DLR-F6transport configuration in the national transonic facility[C]//AIAA Applied Aerodynamics Conference,2009.
    [18]Martins J R R A,Lambe A B.Multidisciplinary design optimization:a survey of architectures[J].AIAA Journal,2013,51(9):2049-2075.
    [19]Zhao G Q.Differential evolution algorithm with greedy strategy and its applications[D].Harbin:Department of Automatic Test and Control,Harbin Institute of Technology,2007.(in Chinese)赵光权.基于贪婪策略的微分进化算法及其应用研究[D].哈尔滨:哈尔滨工业大学自动化测试与控制系,2007.
    [20]Kennedy G J,Kenway G K,Martins J.High aspect ratio wing design optimal aerostructural tradeoffs for the next generation of materials[C]//Aerospace Sciences Meeting,2014.
    [21]Zhang K S,Han Z H,Li W J,et al.Multidisciplinary aerodynamic/structural design optimization for high subsonic transport wing using approximation technique[J].Acta Aeronautica et Astronautica Sinica.2006,27(5):810-815.(in Chinese)张科施,韩忠华,李为吉,等.基于近似技术的高亚音速运输机机翼气动/结构优化设计[J].航空学报,2006,27(5):810-815.
    [22]Kim Y,Kim J,Jeon Y,et al.Multidisciplinary design optimization of supersonic fighter wing using response surface methodology[C]//40th AIAA Aerospace Sciences Meeting&Exhibit,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700