陕西石泉井不同频带水位对气压和固体潮的响应特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response Characteristics of Water Level to Atmospheric Loading and Solid Earth Tide in Different Frequency Bands:A Case Study of the Shiquan Well,Shaanxi
  • 作者:杨小林 ; 危自根
  • 英文作者:YANG Xiaolin;WEI Zigen;State Key Laboratory of Geodesy and Earth's Dynamics,Institute of Geodesy and Geophysics,CAS;University of Chinese Academy of Sciences;Shaanxi Earthquake Agency;
  • 关键词:石泉井 ; 气压 ; 固体潮 ; 井-含水层 ; 相干函数 ; 千枚岩
  • 英文关键词:Shiquan well;;barometric pressure;;solid earth tide;;well-aquifer;;coherence function;;phyllite
  • 中文刊名:DKXB
  • 英文刊名:Journal of Geodesy and Geodynamics
  • 机构:中国科学院测量与地球物理研究所大地测量与地球动力学国家重点实验室;中国科学院大学;陕西省地震局;
  • 出版日期:2018-10-15
  • 出版单位:大地测量与地球动力学
  • 年:2018
  • 期:v.38
  • 基金:国家重点研发计划(2016YFC0600402);; 中国地震局震情跟踪课题(2017010206)~~
  • 语种:中文;
  • 页:DKXB201810020
  • 页数:5
  • CN:10
  • ISSN:42-1655/P
  • 分类号:110-114
摘要
为揭示陕西石泉井不同频带水位对气压和固体潮的响应特征,采用频谱分析、相干函数和时移分析方法,对石泉井2015-11-01~2016-02-29的井水位、气压和理论重力固体潮等进行深入分析。结果表明,低频带(f<0.5cpd)井水位对气压响应较为一般且波动较大,对固体潮响应很差;中频带(0.5~8cpd)井水位对固体潮响应很好,同时,对气压成分中的K1、S2和S3频点有较好的响应;高频带(f>8cpd)井水位与气压和固体潮的相干性均较差,这可能由于该频带井水位的信噪比较低和气压能量较弱等因素所致。此外,在全频带内,随着气压周期的增大,井水位的滞后时间也相应从1min增至720min;在中低频带的某些频点或频段,井水位对气压响应的时移存在超前和异常波动现象。
        The main objective of this research is to investigate the response characteristics of water level to atmospheric loading and solid Earth tide in different frequency bands in the Shiquan well,Shaanxi.Using the recorded water level,barometric pressure and the corresponding theoretical gravity tide from 1 November 2015 to 29 February 2016,we obtain the barometric and tidal responses of the water level by fast Fourier transform(FFT),coherence function,as well as cross-correlation.The results show that barometric response is relatively weak and fluctuates greatly,and the tidal response is extremely weak in low frequency band(f<0.5 cpd);in the intermediate frequency band(0.5-8 cpd),tidal response is excellent;furthermore,the barometric responses are relatively strong at the frequency of K1,S2,and S3 waves,while the barometric and tidal responses are both relatively weak.The coherence functions between the water level and the barometric pressure are relatively low in high frequency(f>8 cpd),reflecting a bad correlation between the two signals,which may be caused by the low signal-to-noise ratio in the water level and the relatively weak barometric signals.Moreover,the time lag of barometric response increases from 1 minute to 720 minutes with increasing periods of barometric pressure over all frequency bands.Lead effects and anomalous fluctuations appear in barometric response at some frequency points or ranges over medium-low frequency bands.
引文
[1] Hsieh P A,Bredehoeft J D,Farr J M.Determination of Aquifer Transmissivity from Earth Tide Analysis[J].Water Resour Res,1987,23(10):1 824-1 832
    [2]张昭栋.高阶差分法求深井水位的气压系数[J].地震学刊,1986(2):74-78(Zhang Zhaodong.Estimating the Barometric Coefficients of Water Level in Deep Well Using High-Order Difference[J].Journal of Seismology,1986(2):74-78)
    [3]王宝银.深井水位的气压、固体潮因素消除——调和、付氏和逐步回归分析方法的应用[J].华北地震科学,1986,4(1):16-27(Wang Baoyin.The Elimination of Influence of the Earth Tide and Air-Pressure on the Water Level in a Deep Borehole-An Application of Harmonic Fourier and Gradual Regression Analysis Methods[J].North China Earthquake Sciences,1986,4(1):16-27)
    [4] Toll N J,Rasmussen T C.Removal of Barometric Pressure Effects and Earth Tides from Observed Water Levels[J].Groundwater,2007,45(1):101-105
    [5] Roeloffs E A.Hydrologic Precursor to Earthquakes:A Review[J].Pure Appl Geophys,1988,126(2):177-209
    [6]晏锐,黄辅琼,陈颙.小波分析在井水位的气压和潮汐改正中的应用[J].中国地震,2007,22(2):204-210(Yan Rui,Huang Fuqiong,Chen Yong.Application of Wavelet Decomposition to Remove and Tidal Response in Borehole Water Level[J].Earthquake Research in China,2007,22(2):204-210)
    [7]杨兴科,韩珂,吴旭,等.南秦岭陆内造山构造变形特征与演化:石泉-汉阴北部一带晚印支-燕山期构造变形分析[J].地学前缘,2016,23(4):72-80(Yang Xingke,Han Ke,Wu Xu,et al.The Structural Deformation and Tectonic Evolution of Intra-Continental Orogeny in South Qinling Orogen:Structural Deformation Analysis of the Northern Part of Shiquan-Hanyin Belt in the Late Indosinian-Yanshanian Period[J].Earth Science Frontiers,2016,23(4):72-80)
    [8]胡健民,孟庆任,陈虹,等.秦岭造山带内宁陕断裂带构造演化及其意义[J].岩石学报,2011,27(3):657-671(Hu Jianmin,Meng Qingren,Chen Hong,et al.Tectonic Evolution and Implication of Ningshan Fault in the Central Part of Qinling Orogen[J].Acta Petrologica Sinica,27(3):657-671)
    [9] Matsumoto K.GOTIC2:A Program for Computation of Oceanic Tidal Loading Effect[J].J Geod Soc Japan,2010,47:243-248
    [10]来贵娟,黄辅琼.中高频带地下水位对气压和固体潮的响应特征分析[J].地震,2010,30(2):80-88(Lai Guijuan,Huang Fuqiong.Response Characteristics of Groundwater Level to Barometric Pressure and Earth Tide in the Moderate to High Frequency Band[J].Earthquake,2010,30(2):80-88)
    [11]Cooper H H,Bredehoeft J D,Papadopulos I S,et al.The Response of Well-Aquifer Systems to Seismic Waves[J].J Geophys Res,1965,70(16):3 915-3 926
    [12]He A,Fan X,Zhao G,et al.Co-Seismic Response of Water Level in the Jingle Well(China)Associated with the Gorkha Nepal(MW7.8)Earthquake[J].Tectonophysics,2017,714-715:82-89
    [13]Kopylova G N,Smolina N N.Water Level Changes in the Wells of Kamchatka at the Time of the Mw7.6,April 20,2006 Olyutorskii Earthquake[J].J Volcanolog Seismol,2010,4(3):180-192
    [14]Mentes G,Eper-Pápai I.Investigation of Meteorological Effects on Strain Measurements at Two Stations in Hungary[J].J Geodyn,2006,41(1):259-267
    [15]Roeloffs E.Poroelastic Techniques in the Study of Earthquake-Related Hydrologic Phenomena[J].Adv Geophys,1996,37(1):135-195

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700