旋转气泵驱动环路冷却机组的工作特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Working Characteristics of a Rotary Booster-driven Loop Cooling Unit
  • 作者:李少聪 ; 马国远 ; 薛连政 ; 周峰
  • 英文作者:Li Shaocong;Ma Guoyuan;Xue Lianzheng;Zhou Feng;College of Environmental and Energy Engineering, Beijing University of Technology;
  • 关键词:热管 ; 冷却能力 ; 旋转式气泵 ; 数据中心
  • 英文关键词:heat pipe;;cooling capacity;;rotary booster;;data center
  • 中文刊名:ZLXB
  • 英文刊名:Journal of Refrigeration
  • 机构:北京工业大学环境与能源工程学院;
  • 出版日期:2019-02-16
  • 出版单位:制冷学报
  • 年:2019
  • 期:v.40;No.185
  • 基金:国家自然科学基金(51406002,51776004)资助项目~~
  • 语种:中文;
  • 页:ZLXB201901001
  • 页数:7
  • CN:01
  • ISSN:11-2182/TB
  • 分类号:4-10
摘要
利用自然冷源可有效降低数据中心的冷却能耗,本文研发了一种由旋转气泵驱动的环路自然冷却机组,采用R22作为循环工质,在标准焓差室中搭建实验台。研究了机组的性能及循环特性,并与液泵驱动环路热管机组进行对比。结果表明:随着室内外温差的增加,气泵机组制冷量与EER呈先增大后减小的趋势,功率始终呈下降趋势。机组在室内外温差为25℃时性能最佳,制冷量为17.6 kW,机组能效比(EER_(unit))为15.1,机组功率为1.16 kW,气泵功率为0.509 kW。而与液泵机组相比,当室内外温差为25℃时,气泵机组EER_(unit)比液泵机组EER_(unit)高25.5%;在室内外温差为10℃时,气泵机组EER_(unit)比液泵机组EER_(unit)高104.7%。
        Free cooling is widely applied in data centers as a promising technology for energy conservation. A loop cooling unit driven by a miniature rotary booster for free cooling was developed for a small data center. In this study, compared with air conditioners and pump-driven loop heat-pipe units, the booster-driven loop cooling unit consumed lower power and had a higher energy efficiency ratio(EER_(unit)). An improved rotary booster with a small pressure ratio was adopted in the rotary booster-driven loop cooling unit. The results indicate that with the increase in the indoor and outdoor temperature difference(ΔT), the unit cooling capacity and EER_(unit) first increased and then decreased. When ΔT=25 ℃, the cooling capacity reached 17.6 kW, and the EER_(unit)=15.1. With the increase in ΔT, the power of the unit exhibited a downward trend all the time. When ΔT was 25 ℃, the power of the unit reached 1.16 kW and the power of the booster was 0.509 kW. The thermal performance was compared with that of the pump-driven loop heat-pipe unit. When ΔT=25, 10 ℃, the EER_(unit) values of the rotary booster-driven loop cooling unit were 25.5% and 104.7% higher than those of the pump-driven loop heat-pipe unit, respectively.
引文
[1] EBRAHIMI K, JONES G F, FLEISCHER A S. A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities[J]. Renewable and Sustainable Energy Reviews, 2014, 31(2): 622-638.
    [2] 李改莲, 时子超, 张志伟,等. 数据机房用热管复合式空调节能性试验研究[J]. 低温与超导, 2016(10): 67-71.(LI Gailian, SHI Zichao, ZHANG Zhiwei, et al. Experimental investigation on energy saving of the combined air conditioner in data center by separate heat pipe and vapor compressor[J]. Cryogenics & Superconductivity, 2016(10): 67-71.)
    [3] 胡张保, 张志伟, 李改莲, 等. 采用微通道蒸发器的分离式热管空调传热性能的试验研究[J]. 流体机械,2015,43(11):68-71. (HU Zhangbao, ZHANG Zhiwei, LI Gailian, et al. Experimental investigation on the heat transfer performance of the separate type heat pipe air conditioning with a microchannel evaporator[J]. Fluid Machinery, 2015, 43(11):68-71.)
    [4] 石文星, 韩林俊, 王宝龙, 等. 热管/蒸气压缩复合空调原理及其在高发热量空间的应用效果分析[J]. 制冷与空调(北京), 2011, 11(1):30-36. (SHI Wenxing, HAN Linjun, WANG Baolong, et al. Principle of combined air conditioner by heat pipe and vapor compression and its application analysis in high heat density space[J]. Refrigeration and Air-conditioning, 2011, 11(1): 30-36.)
    [5] LEE S, KANG H, KIM Y. Performance optimization of a hybrid cooler combining vapor compression and natural circulation cycles[J]. International Journal of Refrigeration, 2008, 32(5):800-808.
    [6] ZHANG Hainan, SHAO Shuangquan, XU Hongbo, et al. Free cooling of data centers: a review[J]. Renewable and Sustainable Energy Reviews, 2014, 35: 171-182.
    [7] 刘杰. 航天机械泵驱动两相流冷却环路循环特性的研究[D]. 上海: 上海交通大学,2008. (LIU Jie. Investigations on running characteristics of the mechanically pumped cooling loop for space applications[D]. Shanghai:Shanghai Jiao Tong University, 2008.)
    [8] 王铁军,王飞,李宏洋,等. 动力型分离式热管设计与试验研究[J]. 制冷与空调(北京),2014,14(12):41-43,40. (WANG Tiejun, WANG Fei, LI Hongyang, et al. Design and experimental study of dynamic separate type heat pipe [J]. Refrigeration and Air-conditioning, 2014, 14(12):41-43,40.)
    [9] 张双. 数据中心用泵驱动两相冷却回路换热特性研究[D]. 北京: 北京工业大学,2015. (ZHANG Shuang. Study on heat transfer characteristics of a pump-driven two-phase cooling loop for data centers [D]. Beijing: Beijing University of Technology, 2015.)
    [10] ZHANG Shuang, MA Guoyuan, ZHOU Feng. Experimental study on a pump driven loop-heat pipe for data center cooling[J]. Journal of Energy Engineering, 2014, 141(4): 04014054.
    [11] MA Yuezheng, MA Guoyuan, ZHANG Shuang, et al. Cooling performance of a pump-driven two phase cooling system for free cooling in data centers[J]. Applied Thermal Engineering, 2016, 95:143-149.
    [12] WEI Chuancheng, MA Guoyuan, ZHOU Feng, et al. Application investigation on a pumped loop heat pipe heat exchanger unit for a small data center [C]//24th IIR International Congress of Refrigeration, ICR, 2015.
    [13] ZHOU Feng, WEI Chuancheng, MA Guoyuan. Development and analysis of a pump-driven loop heat pipe unit for cooling a small data center [J]. Applied Thermal Engineering, 2017, 124: 1169-1175.
    [14] ZHANG Penglei, WANG Baolong, SHI Wenxing, et al. Experimental investigation on two-phase thermosyphon loop with partially liquid-filled downcomer[J]. Applied Energy, 2015, 160:10-17.
    [15] 魏川铖,马国远,许树学,等. 通讯基站用气泵驱动环路热管的设计及实验研究[C]//第十二届全国电冰箱(柜)、空调器及压缩机学术交流大会论文集. 合肥: 中国制冷学会小型制冷机低温生物医学委员会、家电产业技术创新战略联盟, 2014. (WEI Chuancheng, MA Guoyuan, XU Shuxue, et al. Design and experimental study on heat exchanger unit with a gas pump-driven loop heat pipe for communication base stations[C]//12th National Conference on refrigerators (cabinet), air conditioners and compressors. Hefei: Small Refrigerator Low Temperature Biomedical Committee of Chinese Association of Refrigeration, Home Appliance Industry Technology Innovation Strategic Alliance, 2014.)
    [16] 石文星,王飞,黄德勇,等. 气体增压型复合空调机组研发及全年运行能效分析[J]. 制冷与空调(北京),2017,17(2):11-16. (SHI Wenxing, WANG Fei, HUANG Deyong, et al. Development of gas pressurized composite air-conditioning unit and annual operation energy efficiency analysis[J]. Refrigeration and Air-conditioning, 2017, 17(2):11-16.)
    [17] 费业泰.误差理论与数据处理[M].北京: 机械工业出版社,2010: 82-86.(FEI Yetai. Error theory and data processing [M]. Beijing: Mechanical Industry Press, 2010: 82-86.)
    [18] 马国远,王绚,周峰. 泵驱动两相复合制冷机组变频运转特性[J]. 北京工业大学学报, 2017, 43(8):1245-1251. (MA Guoyuan, WANG Xuan, ZHOU Feng. Frequency variable characteristics for pump-driven two phase loop integrated with vapor compression refrigeration system[J]. Journal of Beijing University of Technology, 2017, 43(8):1245-1251.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700