卫星地面站雷电直击效应防护设计探讨
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Discussion on Protection Design of Direct Lightning Strike for Satellite Ground Station
  • 作者:孙俊德 ; 李志鹏 ; 赵洪升 ; 王凯
  • 英文作者:Sun Junde;Li Zhipeng;Zhao Hongsheng;Wang Kai;Beijing Special Engineering Design and Research Institute;Henan Provincial Meteorological Society;
  • 关键词:雷击发生率 ; 保护范围 ; 折线法 ; 滚球法 ; 磁场强度
  • 英文关键词:lightning strike probability;;protective range;;polygon method;;rolling sphere method;;magnetic field intensity
  • 中文刊名:HNQX
  • 英文刊名:Meteorological and Environmental Sciences
  • 机构:北京特种工程设计研究院;河南省气象学会;
  • 出版日期:2019-06-25 11:06
  • 出版单位:气象与环境科学
  • 年:2019
  • 期:v.42;No.187
  • 语种:中文;
  • 页:HNQX201902017
  • 页数:5
  • CN:02
  • ISSN:41-1386/P
  • 分类号:126-130
摘要
卫星地面站雷电防护工程通常采用接闪杆作为天线主体的雷电直击效应防护措施,接闪杆的高度不仅影响其保护范围,而且影响其截闪概率。通过计算年预计雷击次数对截闪概率进行量化分析,结果表明,截闪概率近似与接闪杆高度平方成正比,采用过高的接闪杆将增大地面站遭受雷击电磁脉冲损坏的风险。为优化接闪杆设计,定义了保护体积的概念,并利用折线法与滚球法分别计算了三维立体空间内的保护范围。结果表明:接闪杆的保护范围与高度呈现非线性相关,当接闪杆超过一定高度(折线法超过30 m,滚球法超过0.8倍滚球半径)后,对保护范围的影响十分有限;当接闪杆高度低于0.4倍滚球半径时,滚球法保护范围较大,反之则折线法保护范围较大。对接闪杆接闪瞬间周边的磁场强度分析结果表明,无屏蔽环境下地面站电子系统与接闪杆的常规距离远小于两者的理论安全距离,实际工程中难以通过增大接闪杆与卫星地面站的间距消除雷击电磁脉冲危害。为降低这一风险,卫星地面站直击雷防护应优先采用天线自带接闪杆的方式,条件不具备时也应尽量避免采用单支高大接闪杆,可选取适当的计算方法,采用多支较低接闪杆共同防护的方案。
        The lightning protection project of the satellite ground station usually adopts the lightning rod as the direct lightning protection measure of the antenna main body. The height of the lightning rod not only affects its protection range, but also affects the probability of interception. The probability of interception is quantitative analyzed by calculating the yearly frequency of lighting stroke times. The results show that the probability of intercepting lightning stroke is approximately proportional to the square of the height of the lightning rod. An excessively high lightning rod will increase the risk of damage to the ground station caused by lightning electromagnetic pulse. In order to optimize the design of the lightning rod, the concept of protection volume is defined, and the protection range in the three-dimensional space is calculated using the polygon method and the rolling sphere method. The results show that the protection ranges of lightning rod is nonlinear correlated with its height. The influence on the protection range is very limited when the lightning rod exceeds a certain height(polygon method: exceed 30 m, rolling sphere method: exceeds 0.8 times the radius of rolling sphere). When the height of the lightning rod is less than 0.4 times the radius of the rolling sphere, the protection range of the rolling sphere method is larger; otherwise, the protection range of the polygon method is larger. The magnetic induction intensity around the lightning rod when stroked by lightning is analyzed, the conventional distance between the ground station electronic system and the lightning rod is much smaller than the theoretical safety distance.The results show that the damage of lightning electromagnetic pulse could not be eliminated by increasing the distance between the lightning rod and the satellite ground station in practical engineering. In order to reduce this risk, the protection design of direct lightning strike for satellite ground station should be given priority to the way of the antenna bringing its own lightning rod. When the condition is not available, a single tall lightning rod should be avoided as far as possible, several lower ones combined with each other are more applicable with appropriate calculation method carried out.
引文
[1]曾嵘,周旋,王泽众,等.国际防雷研究进展及前沿述评[J].高电压技术,2015,41(1):1-13.
    [2]扈海泽,刘小丽,毛弋,等.特殊防雷接地系统技术研究[J].电瓷避雷器,2016(2):68-73.
    [3]陈谦.雷电电磁脉冲防护及SPD选择[J].建筑电气,2016,35(6):17-21.
    [4]刘畅.既有建筑防雷接地策略探讨[J].建筑电气,2018,37(7):64-68.
    [5]钱慕晖,季晓鸣.计算机网络系统的雷电防护[J].气象与环境科学,2007,30(增刊):190-192.
    [6]谢征.卫星通信小型地球站雷电防护技术[J].气象科技,2005,33(3):275-277.
    [7]张晓,余占清,罗兵,等.雷电脉冲电磁场对电站敏感设备的电磁干扰[J].高电压技术,2014,40(6):1696-1702.
    [8]孔祥贞,郄秀书,张广庶,等.多接地点闪电的梯级先导与回击过程的研究[J].中国电机工程学报,2005,25(22):145-150.
    [9]谢施君,谷山强,陈维江,等.负极性长间隙放电梯级先导特征[J].高电压技术,2009,35(12):2953-2957.
    [10]周俊,行鸿彦.不同建筑物对雷云电过程的影响分析[J].电瓷避雷器,2017(5):20-24.
    [11]洛可夫(美),马丁(美).雷电[M].北京:机械工业出版社,2016:30-31.
    [12]赵祖强,高宾永,褚桂成,等.建筑物电子信息系统雷击风险评估方法及应用[J].气象与环境科学,2008,31(2):89-93.
    [13]关久旭.雷击大地密度Ng数值研究[J].气象与环境科学,2016,39(4):135-139.
    [14]王红,张永军,陈金根,等.基于闪电定位监测数据的雷暴特征分析[J].沙漠与绿洲气象,2014,8(6):66-69.
    [15]王洁,杨洋,曹继军,等.一次强雷暴天气与大气环境场的关系分析[J].干旱气象,2014,32(1):70-74.
    [16]周贺玲,张绍恢,杨艳.河北廊坊雷暴大风的气候特征[J].干旱气象,2014,32(4):588-592.
    [17]张祎,李浩,边学文,等.2007-2013年浙江省雷电灾害特征统计分析[J].气象与环境科学,2018,41(2):139-143.
    [18]林溪猛,卢辉林,黄月清,等.福建古雷石化基地雷电活动特征及对策分析[J].气象与环境科学,2016,39(4):109-114.
    [19]谭涌波,师正,王宁宁,等.随机性与电环境特征对地闪击地点影响的数值模拟[J].地球物理学报,2012,55(11):3534-3541.
    [20]巩崇水,曾淑玲,王嘉媛,等.近30年中国雷暴天气气候特征分析[J].高原气象,2013,32(5):1442-1449.
    [21]郭凤霞,王曼霏,黄兆楚,等.青藏高原雷暴电荷结构特征及成因的数值模拟研究[J].高原气象,2018,37(4):911-922.
    [22]中国电力科学研究院.GB/T 50064-2014交流电气装置的过电压保护和绝缘配合设计规范[S].北京:中国计划出版社,2014.
    [23]中国中元国际工程公司.GB50057-2010建筑物防雷设计规范[S].北京:中国计划出版社,2010.
    [24]马金福,冯志伟,汝洪博,等.雷达天线罩直击雷防护计算方法探讨[J].建筑电气,2013,32(6):55-59.
    [25]逯曦,钱慕晖,张华明,等.利用滚球法反推求解新一代天气雷达站避雷针高度[J].气象科技,2017,45(3):548-554.
    [26]何金良,董林,曾嵘,等.±800 kV特高压直流开关场内避雷线间距分析[J].高电压技术,2010,36(1):19-25.
    [27]杨宁,张其林,侯文豪,等.考虑上行先导情况下建筑物闪击距离和吸引半径研究[J].科学技术与工程,2016,16(8):27-34.
    [28]师伟,李庆民.基于先导放电理论的雷击上行先导起始研究[J].中国电机工程学报,2014,34(15):2470-2477.
    [29]赵凯华,陈熙谋.电磁学[M].北京:高等教育出版社,2011:245-250.
    [30]魏明.雷电电磁脉冲及其防护[M].北京:国防工业出版社,2012:120-122.
    [31]刘吉克,朱清峰,祁征,等.YD/T 3006-2016通信铁塔临近区域的防雷技术要求[S].北京:北京邮电大学出版社,2016.
    [32]王英,吴维宁,万保权,等.GB/T 17626.9-2011电磁兼容试验和测量技术脉冲磁场抗扰度试验[S].北京:中国计划出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700