碳纳米管/高密度聚乙烯复合薄膜的结构与性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Structure and Performance of Carbon Nanotube/High-Density Polyethylene Composite Film
  • 作者:刘佳林 ; 周庚衡 ; 于妍妍 ; 吕卫帮
  • 英文作者:LIU Jia-lin;ZHOU Geng-heng;YU Yan-yan;Lü Wei-bang;Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Science(CAS);University of Chinese Academy of Sciences;School of Nano Technology and Nano Bionics,University of Science and Technology of China;
  • 关键词:碳纳米管 ; 纳米混合串晶 ; 纳米复合材料 ; 力学性能 ; 结晶
  • 英文关键词:carbon nanotube;;nanohybrid shish kebab;;nanocomposites;;mechanical properties;;crystallization
  • 中文刊名:HBGG
  • 英文刊名:Journal of North University of China(Natural Science Edition)
  • 机构:中国科学院苏州纳米技术与纳米仿生研究所;中国科学院大学;中国科学技术大学纳米技术与纳米仿生学院;
  • 出版日期:2019-05-07
  • 出版单位:中北大学学报(自然科学版)
  • 年:2019
  • 期:v.40;No.185
  • 基金:国家自然科学基金资助项目(11472291)
  • 语种:中文;
  • 页:HBGG201903010
  • 页数:7
  • CN:03
  • ISSN:14-1332/TH
  • 分类号:62-68
摘要
以浮动催化化学气相沉积法生长的碳纳米管薄膜为主体,以高密度聚乙烯为修饰材料,采用溶液等温结晶工艺,制备内部为纳米混合杂化串晶结构的碳纳米管/高密度聚乙烯复合薄膜,并探究该结构产生的互锁效应对薄膜性能的影响机理.通过调节该结构的主要参数,即高密度聚乙烯片晶长度与周期距离,实现互锁效应的优化.研究结果表明,碳纳米管/高密度聚乙烯复合薄膜断裂应力为117.69 MPa,应变为52.85%,比原始碳纳米管薄膜提升了40%与270%.这种工艺方法为高性能纳米复合材料的制备提供了可能.
        The carbon nanotube(CNT)/high density polyethylene(HDPE)composite film with a nanohybrid shish kebab(NHSK)structure has been fabricated via a solution cooling crystallization process.The influence of the interlocking effect resulted by the NHSK structure on the performance of the composite film has been analyzed.By adjusting the parameters of the NHSK structure,such as the lamellar HDPE crystal length and the interval of the lamellar crystals on the CNT surface,the interlocking effect achieved optimization.As a result,the fabricated composite film has a high ultimate tensile strength of 117.69 MPa and an elongation at break of 52.85%,which are 40% and 270% higher than that of the pristine CNT film.This process paves a new way for fabrication of high performance advanced nanocomposites.
引文
[1]Belytschko T,Xiao S P,Schatz G C,et al.Atomistic simulations of nanotube fracture[J].Phys.Rev.B.,2002,65(23):235430.
    [2]Chou T W,Gao L,Thostenson E T,et al.An assessment of the science and technology of carbon nanotube-based fibers and composites[J].Compos.Sci.Technol.,2010,70(1):1-19.
    [3]Song K A,Zhang Y Y,Meng J S,et al.Structural polymer-based carbon nanotube composite fibers:understanding the processing–structure–performance relationship[J].Materials,2013,6(6):2543-2577.
    [4]Tsuji M.Electron Crystallography on Beam Sensitive Materials[C]∥Weirich T E,Lábár J L,Zou X.In electron crystallography:novel approaches for structure determination of nanosized materials,conference of the nano advanced study institute on electron crystallography-novel approaches for structure determination on nanosized materials. Springer Netherlands:Dordrecht,2006:455-472.
    [5]Cheng S,Chen X,Hsuan Y G,et al.Reduced graphene oxide-induced polyethylene crystallization in solution and nanocomposites[J]. Macromolecules,2012,45(2):993-1000.
    [6]Hsiao B S,Yang L,Somani R H,et al.Unexpected shish-kebab structure in a sheared polyethylene melt[J].Phys.Rev.Lett.,2005,94(11):117802.
    [7]Li C Y,Li L Y,Cai W W,et al.Nanohybrid Shishkebabs:periodically functionalized carbon nanotubes[J].Adv.Mater.,2005,17(9):1198-1202.
    [8]Zhang S,Lin W,Wong C P,et al.Nanocomposites of carbon nanotube fibers prepared by polymer crystallization[J].Acs.Appl.Mater.Inter.,2010,2(6):1642-1647.
    [9]Li B,Li L,Wang B,et al.Alternating patterns on single-walled carbon nanotubes[J].Nat.Nanotechnol.,2009,4(6):358-362.
    [10]Miao W J,Li Y G,Jiang L B,et al.Epitaxial crystallization of precisely methyl-substituted polyethylene induced by carbon nanotubes and graphene[J].Crystals.,2018,8:168.
    [11]Ellen L H,Darren J H,Eleanor C,et al.Structure evolution in poly(ethylene terephthalate)(PET)-multiwalled carbon nanotube(MWCNT)composite films during in-situ uniaxial deformation[J].Polymer,2016,92:239-249.
    [12]Shi SY,Wang L N,Xin C Z,et al.Special morphology and its role in mechanical enhancement of linear low-density polyethylene/multiwalled carbon nanotubes composites[J].J.Appl.Polym.,Sci.2017,45525:3-7.
    [13]Li P,Li J H,Fan H B,et al Nanohybrid shish-kebab supramolecular structure of single-walled carbon nanotubes/N,N′-dioctyl perylene tetracarboxylic diimide[J].Compos.Sci.Technol.,2017,148:43-48.
    [14]Brown C P,Harnagea C,Gill H S,et al.Rough fibrils provide a toughening mechanism in biological fibers[J].ACS.Nano.,2012,6(3):1961-1969.
    [15]Cranford S W.Increasing silk fibre strength through heterogeneity of bundled fibrils[J].J.R.Soc.Interface.,2013,10(82):148.
    [16]Suekane O,Nagataki A,Mori H,et al.Static friction force of carbon nanotube surfaces[J].Appl.Phys.Express.2008,1(6):064001.
    [17]Chen M Y,Lu Z X.A comparative study of the load transfer mechanisms of the carbon nanotube reinforced polymer composites with interfacial crystallization[J].Compos.Part B.,2015,79:114-123.
    [18]Chen M Y,Lu Z X.Load transfer mechanism of the composites incorporating nanohybrid shish-kebab structures[J].Compos.Struct.,2015,121:247-257.
    [19]Minus M L,Chae H G,Kumar S.Polyethylene crystallization nucleated by carbon nanotubes under shear[J].Acs.Appl.Mater.Inter.,2012,4(1):326-330.
    [20]Vigolo B,Penicaud A,Coulon C,et al.Macroscopic fibers and ribbons of oriented carbon nanotubes[J].Science,2000,290(5495):1331-1334.
    [21]Kodjie S,Li L,Li B,et al.Morphology and crystallization behavior of HDPE/CNT nanocomposite[J].J.Macromol.Sci.B.,2006,45(2):231-245.
    [22]Mai F,Wang K,Yao M,et al.Superior reinforcement in melt-spun polyethylene/multiwalled carbon nanotube fiber through formation of a shish-kebab structure[J].J.Phys.Chem.B.,2010,114(33):10693-10702.
    [23]Laird E D,Li C Y.Structure and morphology control in crystalline polymer-carbon nanotube nanocomposites[J]. Macromolecules, 2013, 46(8):2877-2891.
    [24]Liu Q,Li M,Wang Z,et al.Improvement on the tensile performance of buckypaper using a novel dispersant and functionalized carbon nanotubes[J].Compos.Part.A.,2013,55(6):102-109.
    [25]Cui C J,Qian W Z,Zhao M Q,et al.High-yield synthesis of nanohybrid shish-kebab polyethylenecarbon nanotube structure[J].Chem.Eng.,2013,21:37-43.
    [26]Guo Z,Jones A G,Li N.The effect of ultrasound the homogeneous nucleation of BaSO4during reactive crystallization[J].Chem.Eng.Sci.,2006,61(5):1617-1626.
    [27]Chang C Y,Phillips E M,Liang R,et al.Alignment and properties of carbon nanotube buckypaper/liquid crystalline polymer composites[J].J.Appl.Polym.Sci.,2013,128(3):1360-1368.
    [28]Nie M,Kalyon D M,Fisher F T.Interfacial load transfer in polymer/carbon nanotube nanocomposites with a nanohybrid shish kebab modification[J].Acs.Appl.Mater.Inter.,2014,6(17):14886-14893.
    [29]Yang J,Wang C,Wang K,et al.Direct formation of nanohybrid shish-kebab in the injection molded bar of polyethylene/multiwalled carbon nanotubes composite[J].Macromolecules,2009,42(18):7016-7023.
    [30]Dresselhaus M S,Dresselhaus G,Saito R,et al.Raman spectroscopy of carbon nanotubes[J].Physics Reports,2005,409(2):47-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700