氧化石墨烯-水和乙二醇混合基纳米流体对氢发动机散热影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Influence of Graphene Oxide-Water and Glycol Nanofluids on Heat Transfer of Hydrogen Engine
  • 作者:罗亚萍 ; 邱兆文
  • 英文作者:LUO Yaping;QIU Zhaowen;School of Automobile,Chang'an University;
  • 关键词:氧化石墨烯 ; 纳米流体 ; 氢内燃机 ; 数值模拟 ; 散热性能
  • 英文关键词:graphene oxide;;nanofluid;;hydrogen engine;;numerical simulation;;heat dissipating capability
  • 中文刊名:ZZGY
  • 英文刊名:Journal of Zhengzhou University(Engineering Science)
  • 机构:长安大学汽车学院;
  • 出版日期:2018-07-27 16:22
  • 出版单位:郑州大学学报(工学版)
  • 年:2018
  • 期:v.39;No.160
  • 基金:陕西省自然科学基础研究计划(2017JM7007);; 中央高校基本科研业务费专项资金资助(310822173702)
  • 语种:中文;
  • 页:ZZGY201804005
  • 页数:5
  • CN:04
  • ISSN:41-1339/T
  • 分类号:29-33
摘要
采用高导热性材料氧化石墨烯与水和乙二醇基液配比成纳米流体,研究该纳米流体对氢内燃机散热的影响规律.对比分析纳米流体的热物性随氧化石墨烯体积分数的变化规律,并利用AVL FIRE软件对氢内燃机冷却水套进行网格划分和三维数值模拟计算,得到整机冷却水套在冷却液为氧化石墨烯-水和乙二醇混合基纳米流体(乙二醇体积分数为10%,氧化石墨烯体积分数分别为0%、1%、2%、5%)时的速度分布、热流量变化以及压力损失等信息.结果表明,随着氧化石墨烯体积分数的增大,纳米流体的换热能力不断增强,冷却水腔总热流量逐渐增大;然而以氧化石墨烯-水和乙二醇混合基纳米流体作为冷却介质会引起水套进出口总压降增大,导致冷却系统水泵功率的增加.
        The graphene oxide( GO) was has high thermal conductivity was mixed with water and glycol to form and the influence of the nanofluids on the heat dissipation of hydrogen internal combustion engine was studied. By comparative analysis of the change regularity for nanofluids' thermal properties with the volume fraction of GO,while mesh generation and 3 D numerical simulation for the cooling water jacket of hydrogen engine based on AVL Fire software,the information of velocity distribution,heat flux change and pressure loss could be obtained when coolant was GO-water and glycol nanofluids which the volume fraction of ethylene glycol was 10%,the volume fraction of graphene oxide were 0,1%,2% and 5%. The results showed that the heat flux gradually increases and heat transfer capability evidently enhanced while the concentration of nanoparticles increased,however it was caused total pressure increased between inlet and outlet in the cooling jacket and power loss of water pump also increased.
引文
[1]孙柏刚,田华宇,张冬生.氢内燃机汽车与传统内燃机汽车的经济性比较研究[J].汽车工程学报,2014,4(1):21-27.
    [2]SUBRAMANIAN V,MALLIKARJUNA J M,RAMESH A.Effect of water injection and spark timing on the nitric oxide emission and combustion parameters of a hydrogen fuelled spark ignition engine[J].International journal of hydrogen energy,2007,32(9):1159-1173.
    [3]杨敏敏.氢内燃机燃烧早燃回火问题[J].汽车实用技术,2017(6):150-151.
    [4]崔文政,白敏丽,吕继组,等.纳米流体应用于内燃机冷却水腔强化传热的导热机理分析[J].内燃机学报,2013,31(6):557-563.
    [5]MAGA S,CONG T,GALANIS N.Heat transfer behaviours of nanofluids in a uniformly heated tube[J].Superlattices and microstructures,2004,35(3):543-557.
    [6]李强,宣益民.航天用纳米流体流动与传热特性的实验研究[J].宇航学报,2005,26(4):391-394.
    [7]CHOI C,YOO H S,OH J M.Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants[J].Current applied physics,2008,8(6):710-712.
    [8]LEONG K Y,SAIDUR R,KAZI S N.Performance investigation of an automotive car radiator operated with nanofluid-based coolants(nanofluid as a coolant in a radiator)[J].Applied thermal engineering,2010,30(17):2685-2692.
    [9]邬胜伟,曾效舒,黄民富,等.水基-碳纳米管纳米流体冷却特性的影响因素[J].热加工工艺,2014,43(12):219-222.
    [10]叶宗标,郑伟健,太惠玲.石墨烯-氧化钛复合氨敏感材料的制备与特性研究[J].郑州大学学报(工学版),2016,37(4):49-52.
    [11]YARMAND H,GHAREHKHANI S,SHIRAZI S F S,et al.Nanofluid based on activated hybrid of biomass carbon/graphene oxide:synthesis,thermo-physical and electrical properties[J].International communications in heat&mass transfer,2016,72:10-15.
    [12]LI X,ZOU C,LEI X,et al.Stability and enhanced thermal conductivity of ethylene glycol-based Si C nanofluids[J].International journal of heat&mass transfer,2015,89:613-619.
    [13]GHOZATLOO A,SHARIATY-NIASAR M,RASHIDI A M.Preparation of nanofluids from functionalized graphene by new alkaline method and study on the thermal conductivity and stability[J].International communication in heat and mass transfer,2013,42(3):89-94.
    [14]IJAM A,SAIDUR R,GANESAN P,et al.Stability,thermo-physical properties,and electrical conductivity of graphene oxide-deionized water/ethylene glycol based nanofluid[J].International journal of heat&mass transfer,2015,87:92-103.
    [15]CHU K,LI W S,TANG F L.Flatness-dependent thermal conductivity of graphene-based composites[J].Physics letters A,2013,377(12):910-914.
    [16]BRINKMAN H C.The viscosity of concentrated suspensions and solutions[J].Journal of chemical physics,1952,20(4):571-571.
    [17]BIANCO V,CHIACCHIO F,MANCA O,et al.Numerical investigation of nanofluids forced convection in circular tubes[J].Applied thermal engineering,2009,29(17):3632-3642.
    [18]郭良平,张卫正,王长园,等.柴油机气缸盖传热规律研究[J].北京理工大学学报,2011,31(3):277-282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700