钢内孔洞在外载内压耦合作用下的力学行为研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:STUDY ON MECHANICAL BEHAVIOR OF VOID UNDER THE INTERNAL PRESSURE AND EXTERNAL LOAD IN STEEL
  • 作者:范俊锴 ; 侯高杰
  • 英文作者:FAN JunKai;HOU GaoJie;School of Mechanical and Power Engineering,Henan Polytechnic University;
  • 关键词:钢质零件 ; 孔隙 ; 高强氢压 ; 应力场 ; 变形行为 ; 强度降低
  • 英文关键词:Steel parts;;Void;;High hydrogen pressure;;Stress field;;Deformation behavior;;Strength reduction
  • 中文刊名:JXQD
  • 英文刊名:Journal of Mechanical Strength
  • 机构:河南理工大学机械与动力工程学院;
  • 出版日期:2018-12-06
  • 出版单位:机械强度
  • 年:2018
  • 期:v.40;No.200
  • 基金:国家自然科学基金项目(51405136)资助~~
  • 语种:中文;
  • 页:JXQD201806040
  • 页数:5
  • CN:06
  • ISSN:41-1134/TH
  • 分类号:239-243
摘要
钢中氢的存在不但能导致其力学性能的下降,还会在钢内孔隙内部产生高强氢压作用。以往对于钢质零件孔隙缺陷的研究多集中于外载对孔洞的影响,而对于外载与内氢压耦合作用下孔隙的力学特征问题研究还鲜有涉及。基于氢压理论和气体状态方程建立了孔洞在内氢压和外载耦合作用下的有限元分析模型,研究了孔洞内氢压和孔洞形态对孔洞应力场和变形行为的影响,结果表明:孔洞内氢压对于孔洞的变形具有很强的阻碍作用,球形孔洞最容易萌生裂纹,与外载方向夹角30°的椭球孔洞最容易在垂直外载方向的平面与内表面的切点处产生裂纹,钢质零件内部孔洞存在氢压造成的应力集中严重降低了零件的使用强度。
        The existence of hydrogen in steel can lead to the decline of its mechanical properties,and result in high hydrogen pressure within void in steel. In the past, the research on the void of steel parts mostly focused on the effect of external load. The study of the mechanical properties of void under external load and internal pressure is rarely involved. Based on the hydrogen pressure theory and the gas state equation, a finite element model of void under external load and internal pressure is established. The effects of hydrogen pressure and void shape on the stress field and deformation behavior of the voids were investigated. The results show the hydrogen pressure in the void has a strong hindrance to the deformation of the void. Spherical voids are the most prone to crack initiation. The ellipsoidal void with an angle of 30 ° from the loading direction is most likely to generate cracks at the tangent point of the inner surface and the plane in the vertical load-carrying direction. The stress concentration is due to the presence of hydrogen inside void in the steel parts.And it severely reduces the strength of the parts.
引文
[1] Ferri O M,Ebel T,Bormann R.Influence of surface quality and porosity on fatigue behaviour of Ti-6Al-4V components processed by MIM[J]. Materials Science & Engineering A, 2010,527(7):1800-1805.
    [2] Couper M J,Neeson A E,Griffiths J R.Casting defests and the fatigue life of an aluminium alloy[J].Fatigue & Fracture of Engineering Materials & Structures,2010,13(13):213-227.
    [3] 刘向峰,王来贵,何 峰.含孔洞试件破坏过程的红外试验与数值试验对比分析[J].岩石力学与工程学报, 2005,24(a01):5173-5177.LIU XiangFeng,WANG LaiGui,HE Feng.Comparative analysis on infrared test and numerical test for ahole-preforming specimen’s failure process[J].Chinese Journal of Rock Mechanics and Engineering, 2005,24(a01):5173-5177 (In Chinese).
    [4] 任广升,谭 红.镦粗过程中锻件内孔洞缺陷邻域应变分布的模拟研究[J].塑性工程学报,1994(3):14-19.REN GuangSheng,TAN Hong. Simulation study on the strain distribution of voids in forging in the process of jumping-up[J].Journal of Plasticity Engineering, 1994(3):14-19 (In Chinese).
    [5] 杨圣奇,吕朝辉,渠 涛.含单个孔洞大理岩裂纹扩展细观试验和模拟[J].中国矿业大学学报,2009, 38(6):774-781.YANG ShengQi,Lv ChaoHui,QU Tao. Investigations of crack expansion in marble having a single pre-existing hole:experiment and simulations[J]. Journal of China University of Mining & Technology, 2009, 38(6):774-781 (In Chinese).
    [6] 杜凤山,范俊锴,黄华贵,等.大锻件微孔隙下的氢压模型及其应力场[J].工程力学,2013,30(4):345-349.DU FengShan,FAN JunKai,HUANG HuaGui,et al.Hydrogen pressure model and stress field of micropore in heavy forging[J]. Engineering Mechanics, 2013,30(4):345-349(In Chinese).
    [7] 冯美斌,何家文.循环压缩载荷下缺口根部裂纹萌生的研究[J].机械强度,1989(4):46-50.FENG MeiBin,HE JiaWen. Study on crack initiation of notch root under cyclic compression[J]. Journal of Mechanical Strength, 1989(4):46-50 (In Chinese).
    [8] 李地元,成腾蛟,周 韬,等.冲击载荷作用下含孔洞大理岩动态力学破坏特性试验研究[J].岩石力学与工程学报,2015,34(2):249-260.LI DiYuan,CHENG TengJiao,ZHOU Tao,et al.Experimental study of the dynamic strength and fracturing characteristics of marble specimens with a single hole under impact loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(02): 249-260(In Chinese).
    [9] 褚武扬,乔利杰,李金许.氢脆和应力腐蚀[M].北京:科学出版社,2013:290.CHU WuYang,QIAO LiJie,LI JinXu.Hydrogen embrittlement and stress corrosion cracking[M].Beijing: Science Press,2013:290 (In Chinese).
    [10] 范俊锴,杜凤山,黄华贵,等.钢中微孔隙氢压强度与氢浓度[J].钢铁,2013,48(10):70-75.FAN JunKai,DU FengShan,HUANG HuaGui,et al. Hydrogen pressure and concentration in steel’s micropore[J].Iron and Steel, 2013,48(10):70-75 (In Chinese).
    [11] Kazinczy F D.On the pressure of hydrogen in cavities of steel[J].Acta Metallurgica,1959, 7(7):525-527.
    [12] Krom A H M,Bakker A,Koers R W J.Modelling hydrogen-induced cracking in steel using a coupled diffusion stress finite element analysis[J].International Journal of Pressure Vessels & Piping,1997,72(2):139-147.
    [13] Gao Y X,J.Z.Y I,Lee P D,et al. The effect of porosity on the fatigue life of cast aluminium-silicon alloys[J].Fatigue & Fracture of Engineering Materials & Structures,2004, 27(7):559-570.
    [14] 牛卫中,陈楚杰.钢锭锻造时内部孔洞缺陷变形过程的模拟研究[J].精密成形工程,1989(2):16-21.NIU WenZhong,CHEN ChuJie.Simulation study on deformation process of internal voids in forging[J].Equipment Environmental Engineering,1989(2):16-21 (In Chinese).
    [15] 王元丰,蒲军平.缺陷孔对平面裂纹应力强度因子的影响[J].力学学报,2003,35(1):90-94.WANG YuanFeng,PU JunPing. Effect of defects on stress intensity factor of planar crack[J].Acta Mechanica Sinica,2003,35(1):90-94 (In Chinese).
    [16] 张永军,韩静涛,刘 靖,等.45钢内部裂纹愈合过程孔洞闭合的数值模拟[J].热加工工艺,2008,37(10):80-83.ZHANG YongJun,HAN JingTao,LIU Jing,et al.Numerical simulation on void closing in inner crack healing process of 45 steel[J].Material & Treatment,2008,37(10):80-83(In Chinese).
    [17] 刘鸿文.材料力学[M].北京:高等教育出版社,2010:365-366.LIU HongWen. Material mechanics[M].Beijing: Higher Education Press,2010:365-366(In Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700