氧分压对固体氧化物电解池性能的影响(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Oxygen Partial Pressure on Solid Oxide Electrolysis Cells
  • 作者:侯权 ; 关成志 ; 肖国萍 ; 王建强 ; 朱志远
  • 英文作者:HOU Quan;GUAN Chengzhi;XIAO Guoping;WANG Jianqiang;ZHU Zhiyuan;Department of Molten Salt Chemistry and Engineering,Shanghai Institute of Applied Physics,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Key Laboratory of Interfacial Physics and Technology,Chinese Academy of Sciences;
  • 关键词:固体氧化物电解池 ; 界面 ; 氧分压 ; 理论模型 ; 计算流体动力学模拟
  • 英文关键词:Solid oxide electrolysis cell;;Interface;;Oxygen partial pressure;;Theoretical model;;Computational fluid dynamics
  • 中文刊名:WLHX
  • 英文刊名:Acta Physico-Chimica Sinica
  • 机构:中国科学院上海应用物理研究所熔盐化学与工程技术部;中国科学院大学;中国科学院微观界面物理与探测重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:物理化学学报
  • 年:2019
  • 期:v.35
  • 基金:supported by the “Strategic Priority Research Program” of the Chinese Academy of Sciences(XDA02040600)~~
  • 语种:英文;
  • 页:WLHX201903010
  • 页数:8
  • CN:03
  • ISSN:11-1892/O6
  • 分类号:49-56
摘要
基于固体氧化物电解池的高温电解水蒸气是一种可以在低碳排放条件下实现大规模氢气制备的技术。固体氧化物电解池的工作条件,尤其是所通入的气体组成和压力对其性能有很大的影响。本文基于计算流体力学软件建立了电解池理论模型来研究固体氧化物电解池的氧电极上通入不同氧分压的吹扫气对电解池反应特性的影响,文中所研究的氧分压范围为1.01×10~3–1.0×10~5 Pa。结果表明,可逆的开路电压随着氧分压的提高而增大,然而由活化极化、欧姆极化和浓差极化共同作用导致的极化电压随着氧分压增大而降低。在低电流密度时氧分压越小固体氧化物电解池性能越好,而在高电流密度时氧分压越大固体氧化物电解池性能越好。因此在低电流密度时采用低氧分压吹扫气有利于降低电解过程的耗电量,在高电流密度时采用氧气作为吹扫气有利于减少电解水的电能消耗并能够得到纯氧作为副产物以提高经济价值。
        High-temperature(700–900 °C) steam electrolysis based on solid oxide electrolysis cells(SOECs) is valuable as an efficient and clean path for large-scale hydrogen production with nearly zero carbon emissions, compared with the traditional paths of steam methane reforming or coal gasification. The operation parameters, in particular the feeding gas composition and pressure, significantly affect the performance of the electrolysis cell. In this study, a computational fluid dynamics model of an SOEC is built to predict the electrochemical performance of the cell with different sweep gases on the oxygen electrode. Sweep gases with different oxygen partial pressures between 1.01 × 10~3 and 1.0 × 10~5 Pa are fed to the oxygen electrode of the cell, and the influence of the oxygen partial pressure on the chemical equilibrium and kinetic reactions of the SOECs is analyzed. It is shown that the rate of increase of the reversible potential is inversely proportional to the oxygen partial pressure. Regarding the overpotentials caused by the ohmic, activation, and concentration polarization, the results vary with the reversible potential. The Ohmic overpotential is constant under different operating conditions. The activation and concentration overpotentials at the hydrogen electrode are also steady over the entire oxygen partial pressure range. The oxygen partial pressure has the largest effect on the activation and concentration overpotentials on the oxygen electrode side, both of which decrease sharply with increasing oxygen partial pressure. Owing to the combined effects of the reversible potential and polarization overpotentials, the total electrolysis voltage is nonlinear. At low current density, the electrolysis cell shows better performance at low oxygen partial pressure, whereas the performance improves with increasing oxygen partial pressure at high current density. Thus, at low current density, the best sweep gas should be an oxygen-deficient gas such as nitrogen, CO_2, or steam. Steam is the most promising because it is easy to separate the steam from the by-product oxygen in the tail gas, provided that the oxygen electrode is humidity-tolerant. However, at high current density, it is best to use pure oxygen as the sweep gas to reduce the electric energy consumption in the steam electrolysis process. The effects of the oxygen partial pressure on the power density and coefficient of performance of the SOEC are also discussed. At low current density, the electrical power demand is constant, and the efficiency decreases with growing oxygen partial pressure, whereas at high current density, the electrical power demand drops, and the efficiency increases.
引文
(1)Ni,M.;Leung,M.K.;Leung,D.Y.Int.J.Hydrog.Energy 2008,33(9),2337.doi:10.1016/j.ijhydene.2008.02.048
    (2)Wachsman,E.D.;Lee,K.T.Science 2011,334(6058),935.doi:10.1126/science.1204090
    (3)Wang,S.Z.Acta Phys.-Chim.Sin.2004,20(1),43.[王世忠.物理化学学报,2004,20(1),43.]doi:10.3866/PKU.WHXB20040109
    (4)Stempien,J.P.;Sun,Q.;Chan,S.H.J.Power.Technol.2013,93(4),216.doi:10.1109/IEEM.2013.6962406
    (5)Yu,B.;Liu,M.;Zhang,W.;Zhang,P.;Xu,J.Acta Phys.-Chim.Sin.2011,27(2),395.[于波,刘明义,张文强,张平,徐景明.物理化学学报,2011,27(2),395.]doi:10.3866/PKU.WHXB20110214
    (6)Yu,L.;Yu,F.Y.;Yuan,L.L.;Cai,W.Z.;Liu,J.;Yang,C.H.;Liu,M.L.Acta Phys.-Chim.Sin.2016,32(2),503.[余亮,于方永,苑莉莉,蔡位子,刘江,杨成浩,刘美林.物理化学学报,2016,32(2),503.]doi:10.3866/PKU.WHXB201512032
    (7)Wang,Z.;Mori,M.;Araki,T.Int.J.Hydrog.Energy 2010,35,4451.doi:10.1016/j.ijhydene.2010.02.058
    (8)O’Brien,J.E.;Stoots,C.M.;Herring,J.S.;Hartvigsen,J.J.Fuel Cell Sci.Technol.2006,3,213.doi:10.1115/1.2179435
    (9)Navasa,M.;Yuan,J.;Sundén,B.Appl.Energy 2015,137(137),867.doi:10.1016/j.apenergy.2014.04.104
    (10)Laguna-Bercero,M.A.J.Power Sources 2012,203,4.doi:10.1016/j.jpowsour.2011.12.019
    (11)Holladay,J.D.;Hu,J.;King,D.L.;Wang,Y.Catal.Today 2009,139,244.doi:10.1016/j.cattod.2008.08.039
    (12)Gomez,S.Y.;Hotza,D.Renew Sust.Energ.Rev.2016,155.doi:10.1016/j.rser.2016.03.005
    (13)Udagawa,J.;Aguiar,P.;Brandon,N.P.J.Power Sources 2007,166(1),127.doi:10.1016/j.jpowsour.2006.12.081
    (14)Lindstrom,P.J.;Mallard,W.G.NIST Chemistry Webbook;NISTStandard Reference Database Number 69,National Institute of Standards and Technology:Gaithersburg,MD,USA,retrieved 2010-03-26.
    (15)Udagawa,J.;Aguiar,P.;Brandon,N.P.J.Power Sources 2008,180(1),354.doi:10.1016/j.jpowsour.2008.01.069
    (16)Hjalmarsson,P.;Sun,X.;Liu,Y.;Chen,M.J.Power Sources 2013,349.doi:10.1016/j.jpowsour.2012.08.063
    (17)Lagunabercero,M.A.;Campana,R.;Larrea,A.;Kilner,J.A.;Orera,V.M.J.Power Sources 2011,196(21),8942.doi:10.1016/j.jpowsour.2011.01.015
    (18)Kim,J.;Ji,H.I.;Dasari,H.P.;Shin,D.;Song,H.;Lee,J.H.;Kim,B.K.;Je,H.J.;Lee,H.W.;Yoon,K.J.Int.J.Hydrog.Energy 2013,38(3),1225.doi:10.1016/j.ijhydene.2012.10.113
    (19)Kamata,H.;Hosaka,A.;Mizusaki,J.;Tagawa,H.Solid State Ionics1998,106,237.doi:10.1016/S0167-2738(97)00495-5
    (20)Mocoteguy,P.;Brisse,A.Int.J.Hydrog.Energy 2013,38(36),15887.doi:10.1016/j.ijhydene.2013.09.045
    (21)Yang,C.;Coffin,A.;Chen,F.Int.J.Hydrog.Energy 2010,35(8),3221.doi:10.1016/j.ijhydene.2010.01.056
    (22)Virkar,A.V.Int.J.Hydrog.Energy 2010,35(18),9527.doi:10.1016/j.ijhydene.2010.06.058
    (23)Cacciuttolo,Q.;Vulliet,J.;Lair,V.;Cassir,M.;Ringuedé,A.Int.J.Hydrog.Energy 2015,40(35),11378.doi:10.1016/j.ijhydene.2015.04.034
    (24)Li,S.L.;Tu,H.Y.;Yu,L.J.J.Inorg.Mater.2017,32(5),469.doi:10.15541/jim20160444
    (25)Liu,T.;Wang,C.;Hao,S.;Fu,Z.;Peppley,B.A.;Mao,Z.;Wang,J.;Mao,Z.Int.J.Hydrog.Energy 2016,41(36),15970.doi:10.1016/j.ijhydene.2016.04.243
    (26)Salzano,F.J.;Skaperdas,G.;Mezzina,A.Int J Hydrog.Energy 1985,10(11),801.doi:10.1016/0360-3199(85)90168-5
    (27)Ni,M.;Leung,M.K.H.;Leung,D.Y.C.Int.J.Hydrog.Energy2007,32(13),2305.doi:10.1016/j.ijhydene.2007.03.001
    (28)Buttler,A.;Koltun,R.;Wolf,R.;Spliethoff,H.Int J Hydrog.Energy2015,40(1),38.doi:10.1016/j.ijhydene.2014.10.048
    (29)Bockris,J.;Reddy,A.Modern Electrochemistry;Plenum Publishing Corporation:New York,NY,USA,1977.
    (30)Hernandez-Pacheco,E.;Singh,D.;Hutton,P.N.;Patel,N.;Mann,M.D.J.Power Sources 2004,138(1-2),174.doi:10.1016/j.jpowsour.2004.06.051
    (31)Laurencin,J.;Kane,D.;Delette,G.J.Power Sources 2011,196(4),2080.doi:10.1016/j.jpowsour.2010.09.054
    (32)Costamagna,P.;Honegger,K.J.Electrochem.Soc.1998,145(11),3995.doi:10.1149/1.1838904
    (33)Ni,M.;Leung,M.K.H.;Leung,D.Y.C.J.Power Sources 2006,163(1),460.doi:10.1016/j.jpowsour.2006.09.024
    (34)Ni,M.;Leung,M.K.H.;Leung,D.Y.C.Electrochim.Acta 2007,52(24),6707.doi:10.1016/j.electacta.2007.04.084
    (35)Zhu,H.;Kee,R.J.J.Power Sources 2007,169(2),315.doi:10.1016/j.jpowsour.2007.03.047
    (36)Henke,M.;Willich,C.;Kallo,J.;Friedrich,K.A.Int.J.Hydrog.Energy 2014,39(24),12434.doi:10.1016/j.ijhydene.2014.05.185
    (37)Fuller,E.N.;Ensley,K.;Giddings,J.C.J.Phys.Chem.1969,78,3679.doi:10.1021/j100845a020
    (38)Fuller,E.N.;Schettler,P.D.;Giddings,J.C.Ind.Eng.Chem.1966,58,18.doi:10.1021/ie50677a007
    (39)Henke,M.;Kallo,J.;Friedrich,K.A.;Bessler,W.G.Fuel Cells 2011,11,581.doi:10.1002/fuce.201000098

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700