用户名: 密码: 验证码:
生物去除加工现状综述及其技术分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:State Overview and Technology Analysis of Biomachining
  • 作者:马飞 ; 黄辉 ; 徐西鹏
  • 英文作者:MA Fei;HUANG Hui;XU Xipeng;Institute of Manufacturing Engineering,Huaqiao University;
  • 关键词:微生物 ; 生物去除加工 ; 加工机理 ; 去除率
  • 英文关键词:microorganism;;biomachining;;machining mechanism;;removal rate
  • 中文刊名:ZGJX
  • 英文刊名:China Mechanical Engineering
  • 机构:华侨大学制造工程研究院;
  • 出版日期:2019-03-06 16:19
  • 出版单位:中国机械工程
  • 年:2019
  • 期:v.30;No.509
  • 基金:国家自然科学基金资助项目(51375179,51235004)
  • 语种:中文;
  • 页:ZGJX201905011
  • 页数:9
  • CN:05
  • ISSN:42-1294/TH
  • 分类号:77-85
摘要
介绍了生物去除加工技术产生的背景、发展概况和加工机理。着重对生物去除加工的材料种类、生物去除加工所用的微生物种类和培养基种类进行了详细的综述。分析了目前生物去除加工尚未得到应用的原因,展望了生物去除加工技术未来的研究方向,为深入研究生物去除的加工机理、拓展生物去除加工的应用领域提供参考。
        The technical background, development situation and machining mechanism of biomachining were introduced. The types of materials, microorganism species and the kinds of culture media used in machining processes were reviewed in detail. The reasons of no commercial applications yet were analyzed and the probable further trends of biomachining were forecasted. There will be reference values provided herein for further studying machining mechanism and expanding the application fields of biomachining.
引文
[1] UNO Y, KANEEDA T, YOKOMIZO S. Fundamental Study on Biomachining (Machining of Metals by Thiobacillus Ferrooxidans)[J]. JSME International Journal, Series C: Dynamics, Control, Robotics, Design and Manufacturing, 1996, 39(4): 837-842.
    [2] DIAZ-TENA E, BARONA A, GALLASTEGUI G, et al. Biomachining: Metal Etching via Microorganisms[J]. Critical Reviews in Biotechnology, 2017, 37(3): 323-332.
    [3] DíAZ-TENA E, ROJO N, GURTUBAY L, et al. Biomachining: Preservation of Acidithiobacillus Ferrooxidans and Treatment of the Liquid Residue[J]. Engineering in Life Sciences, 2017, 17(4): 382-391.
    [4] DíAZ-TENA E, GALLASTEGUI G, HIPPERDINGER M, et al. New Advances in Copper Biomachining by Iron-oxidizing Bacteria[J]. Corrosion Science, 2016, 112: 385-392.
    [5] IMRAN M, SARAGIH A S, SAHAR M S U, et al. Digital Maskless Lithography Capabilities for Surface Texturing with Biomachining[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9/12): 3709-3719.
    [6] XENOFONTOS E, FEIDIOU A, CONSTANTINOU M, et al. Copper Biomachining Mechanisms Using the Newly Isolated Acidithiobacillus Ferrooxidans B1[J]. Corrosion Science, 2015, 100: 642-650.
    [7] MUHAMMAD I, ULLAH S M S, HAN D S, et al. Selection of Optimum Process Parameters of Biomachining for Maximum Metal Removal Rate[J]. International Journal of Precision Engineering and Manufacturing—Green Technology, 2015, 2(4): 307-313.
    [8] MUHAMMAD I, KO T J. Escalation of Metal Removal Rate of Biomachining by Controlling Various Process Parameters[J]. Korean Society of Precision Engineering, 2014, 10: 141-142.
    [9] SUWANDI D, WHULANZA Y, ISTIYANTO J. Visible Light Maskless Photolithography for Biomachining Application[J]. Applied Mechanics and Materials, 2014, 493: 552-557.
    [10] DíAZ-TENA E, RODRíGUEZ-EZQUERRO A, MARCAIDE L N L D L, et al. A Sustainable Process for Material Removal on Pure Copper by Use of Extremophile Bacteria[J]. Journal of Cleaner Production, 2014, 84(1): 752-760.
    [11] OLSON G J, BRIERLEY J A, BRIERLEY C L. Bioleaching Review Part B: Progress in Bioleaching: Applications of Microbial Processes by the Minerals Industries[J]. Applied Microbiology and Biotechnology, 2003, 63(3): 249-257.
    [12] COLMER A R, HINKLE M E. The Role of Microorganisms in Acid Mine Drainage: a Preliminary Report[J]. Science, 1947, 106(2751): 253-256.
    [13] WAKSMAN S A, JOFFE J S. Micro?rganisms Concerned in the Oxidation of Sulfur in the Soil: Ⅱ. Thiobacillus Thiooxidans, a New Sulfur-oxidizing Organism Isolated from the Soil[J]. Journal of Bacteriology, 1922, 7(2): 239-256.
    [14] BRYNER L C, JAMESON A K. Microorganisms in Leaching Sulfide Minerals[J]. Applied Microbiology, 1958, 6(4): 281-287.
    [15] ZIMMERLEY S R, WILSON D G, PRATER J D. Cyclic Leaching Process Employing Iron Oxidizing Bacteria: US, 2829964[P]. 1958-04-08.
    [16] UNO Y, KANEEDA T, YOKOMIZO S, et al. Fundamental Study on Electric Field Assisted Biomachining[J]. Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 1996, 62(4): 540-543.
    [17] ZHANG D Y, LI Y Q. Possibility of Biological Micromachining Used for Metal Removal[J]. Science in China(Series C: Life Sciences), 1998, 41(2): 151-156.
    [18] ZHANG D Y, LI Y Q. Studies on Kinetics and Thermodynamics of Biomachining Pure Copper[J]. Science in China(Series C: Life Sciences), 1999, 42(1): 57-62.
    [19] YANG Y, WANG X B, LIU Y D, et al. Techniques for Micromachining Using Thiobacillus Ferrooxidans Based on Different Culture Medium[J]. Applied Mechanics and Materials, 2009, 16/19: 1053-1057.
    [20] HOCHENG H, CHANG J, JADHAV U U. Micromachining of Various Metals by Using Acidithiobacillus Ferrooxidans 13820 Culture Supernatant Experiments[J]. Journal of Cleaner Production, 2012, 20(1): 180-185.
    [21] KUMADA M, KAWAKADO T, KOBUCHI S, et al. Investigations of Fine Biomachining of Metals by Using Microbially Influenced Corrosion—Differences between Steel and Copper in Metal Biomachining by Using Thiobacillus Ferrooxidans[J]. Zairyo to Kankyo/Corrosion Engineering, 2001, 50(9): 411-417.
    [22] OKADA A, UNO Y, HISANO T, et al. Study on Material Removal Mechanism and Improvement of Machining Speed in Biomachining[J]. Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2002, 68(12): 1585-1589.
    [23] 刘玉德,王西彬,蒋放,等. 基于生物刻蚀原理制作微小齿轮结构[J]. 北京工商大学学报(自然科学版), 2005, 23(5): 21-23.LIU Yude, WANG Xibin, JIANG Fang, et al. Micro Gear Structure Fabricated Based on Principle of Biological Etch[J]. Journal of Beijing Technology and Business University (Natural Science Edition), 2005, 23(5): 21-23.
    [24] JOHNSON D, WARNER R, SHIH A J. Surface Roughness and Material Removal Rate in Machining Using Microorganisms[J]. Journal of Manufacturing Science and Engineering, 2007, 129(1): 223-227.
    [25] LILOVA K, KARAMANEV D, FLEMMING R L, et al. Biological Oxidation of Metallic Copper by Acidithiobacillus Ferrooxidans[J]. Biotechnology and Bioengineering, 2007, 97(2): 308-316.
    [26] ISTIYANTO J, KO T J, YOON I. A Study on Copper Micromachining Using Microorganisms[J]. International Journal of Precision Engineering and Manufacturing, 2010, 11(5): 659-664.
    [27] ISTIYANTO J, KIM M Y, KO T J. Profile Characteristics of Biomachined Copper[J]. Microelectronic Engineering, 2011, 88(8): 2614-2617.
    [28] JADHAV U U, HOCHENG H, WENG W. Innovative Use of Biologically Produced Ferric Sulfate for Machining of Copper Metal and Study of Specific Metal Removal Rate and Surface Roughness during the Process[J]. Journal of Materials Processing Technology, 2013, 213(9): 1509-1515.
    [29] ISTIYANTO J, SARAGIH A, KO T J. Metal Based Micro-feature Fabrication Using Biomachining Process[J]. Microelectronic Engineering, 2012, 98: 561-565.
    [30] JADHAV U, HOCHENG H. Use of Aspergillus Niger 34770 Culture Supernatant for Tin Metal Removal[J]. Corrosion Science, 2014, 82: 248-254.
    [31] ISTIYANTO J, TAUFIQURRAKHMAN M, KISWANTO G, et al. Inclination Angle Effect on Surface of Copper in Biomachining[J]. Applied Mechanics and Materials, 2014, 660: 23-27.
    [32] DíAZ-TENA E, RODRíGUEZ-EZQUERRO A, MARCAIDE L N L D L, et al. Use of Extremophiles Microorganisms for Metal Removal[J]. Procedia Engineering, 2013, 63: 67-74.
    [33] LIU Y D, WANG X B, YANG Y, et al. Processing Micro-gear Based on Bio-etching Method[J]. Applied Mechanics and Materials, 2009, 16/19: 120-123.
    [34] HOCHENG H, CHANG J H, HSU H S, et al. Metal Removal by Acidithiobacillus Ferrooxidans through Cells and Extra-cellular Culture Supernatant in Biomachining[J]. CIRP Journal of Manufacturing Science and Technology, 2012, 5(2): 137-141.
    [35] CHANG J H, HOCHENG H, CHANG H Y, et al. Metal Removal Rate of Thiobacillus Thiooxidans without Pre-secreted Metabolite[J]. Journal of Materials Processing Technology, 2008, 201(1/3): 560-564.
    [36] HOCHENG H, JADHAV U U, CHANG J H. Biomachining Rates of Various Metals by Acidithiobacillus Thiooxidans[J]. International Journal of Surface Science and Engineering, 2012, 6(1/2): 101-111.
    [37] TING Y P, KUMAR A S, RAHMAN M, et al. Innovative Use of Thiobacillus Ferrooxidans for the Biological Machining of Metals[J]. Acta Biotechnologica, 2000, 20(20): 87-96.
    [38] MIYANO Y, KAMIYA O, LOTFI C, et al. Fundamental Studies on Biomachining of Carbon Steel by Iron Oxidizing Bacteria[J]. Transactions of JWRI, 2003, 32(1): 239-242.
    [39] MIYANO Y, TSUBONUMA T, SREEKMARI K R, et al. Biomachining of Stainless Steel Using Bacteria[D]. Osaka: Osaka University, 2003, 32(1): 183-187.
    [40] 刘玉德,王西彬,石文天,等. 氧化硫硫杆菌和氧化亚铁硫杆菌生物刻蚀加工的协同作用[J]. 北京理工大学学报, 2010, 30(9): 1028-1031.LIU Yude, WANG Xibin, SHI Wentian, et al. Synergism Effect of Thiobacillus Thiooxidans and Thiobacillus Ferrooxidans on the Bio-etching[J]. Transactions of Beijing Institute of Technology, 2010, 30(9): 1028-1031.
    [41] 李松梅,王彦卿,刘建华,等. 氧化亚铁硫杆菌和氧化硫硫杆菌的协同作用对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2009, 29(3): 182-186.LI Songmei, WANG Yanqing, LIU Jianhua, et al. Synergism Effect of Thiobacillus Ferrooxidans and Thiobacillus Thiooxidan on the Corrosion Behavior of Steel Q235[J]. Journal of Chinese Society for Corrosion and Protection, 2009, 29(3): 182-186.
    [42] XIN B, ZHANG D, ZHANG X, et al. Bioleaching Mechanism of Co and Li from Spent Lithium-ion Battery by the Mixed Culture of Acidophilic Sulfur-oxidizing and Iron-oxidizing Bacteria[J]. Bioresource Technology, 2009, 100(24): 6163-6169.
    [43] LIANG G, MO Y, ZHOU Q. Novel Strategies of Bioleaching Metals from Printed Circuit Boards(PCBs) in Mixed Cultivation of Two Acidophiles[J]. Enzyme and Microbial Technology, 2010, 47(7): 322-326.
    [44] WANG J, BAI J, XU J, et al. Bioleaching of Metals from Printed Wire Boards by Acidithiobacillus Ferrooxidans and Acidithiobacillus Thiooxidans and Their Mixture[J]. Journal of Hazardous Materials, 2009, 172(2/3): 1100-1105.
    [45] SILVERMAN M P, LUNDGREN D G. Studies on the Chemoautotrophic Iron Bacterium Ferrobacillus Ferrooxidans Ⅱ: Manometric Studies[J]. Journal of Bacteriology, 1959, 78(3): 326-331.
    [46] LEATHEN W W, BRALEY S A. A Medium for the Study of the Bacterial Oxidation of Ferrous Iron[J]. Science, 1951, 114(2959): 280-281.
    [47] 庄贺,沈俊剑,黎俊,等. 氧化亚铁硫杆菌的分离鉴定及培养条件优化[J]. 微生物学通报, 2013, 40(7): 1131-1137.ZHUANG He, SHEN Junjian, LI Jun, et al. Isolation and Identification of Thiobacillus Ferrooxidans Isolation and Identification of Thiobacillus Ferrooxidans and Optimization of Its Culture Condition[J]. Microbiology China, 2013,40(7): 1131-1137.
    [48] 王世梅,周立祥. 提高氧化亚铁硫杆菌和氧化硫硫杆菌平板检出率的方法:双层平板法[J]. 环境科学学报, 2005, 25(10): 1418-1420.WANG Shimei, ZHOU Lixiang. A Renovated Approach for Increasing Colony Count Efficiency of Thiobacillus Ferrooxidans and Thiobacillus Thiooxidans: Double-layer Plates[J]. Acta Scientiae Circumstantiae, 2005, 25(10): 1418-1420.
    [49] 冯守帅,杨海麟,高凯,等. 极端嗜酸硫杆菌高效筛选、高密度发酵及保藏方法的研究[J]. 微生物学通报, 2014, 41(12): 2565-2573.FENG Shoushuai, YANG Hailin, GAO Kai, et al. The Study on Efficient Screening, High-density Fermentation and Preservation Methods for Extremely Acidithiobacillus Sp.[J]. Microbiology China, 2014, 41(12): 2565-2573.
    [50] SAND W, GEHRKE T, JOZSA P, et al. (Bio)Chemistry of Bacterial Leaching—Direct vs. Indirect Bioleaching[J]. Hydrometallurgy, 2001, 59(2/3): 159-175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700