极端降雨下绿基和灰基联用的雨洪控制效果
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Urban stormwater and flood control effect of green and grey infrastructures under extreme rainfall conditions
  • 作者:郑鹏 ; 王蓓蕾 ; 陈子杰 ; 潘文斌 ; 黄建辉
  • 英文作者:ZHENG Peng;WANG Bei-lei;CHEN Zi-jie;PAN Wen-bin;HUANG Jian-hui;College of Environment and Resources, Fuzhou University;Key Laboratory of Ecological Environment and Information Atlas Fujian Provincial University, Putian University;Fujian Environmental Protection Design Institute Co., Ltd.;Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control Techniques of Emerging Contaminants;
  • 关键词:绿色基础措施 ; 灰色基础措施 ; SWMM模型 ; 极端天气 ; 雨洪控制
  • 英文关键词:green infrastructure;;grey infrastructure;;SWMM model;;extreme weather condition;;stormwater and flood control
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:福州大学环境与资源学院;莆田学院生态环境及其信息图谱福建省高等学校重点实验室;福建省环境保护设计院有限公司;福建省新型污染物生态毒理效应与控制重点实验室;
  • 出版日期:2019-05-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:v.39
  • 基金:国家重点研发计划(2016YFC0502905);; 生态环境及其信息图谱福建省高等学校重点实验室(莆田学院)开放经费资助课题(ST18005)
  • 语种:中文;
  • 页:ZGHJ201905047
  • 页数:8
  • CN:05
  • ISSN:11-2201/X
  • 分类号:333-340
摘要
以福州大学为例,选取3种绿色基础措施(绿色屋顶、植被浅沟、渗透铺装)与2种灰色基础设施(增大管径、蓄水池)组合,设计了9种雨水系统改造措施方案,并根据3场不同历时极端天气降雨的实测数据,运用暴雨洪水管理模型(SWMM)模拟分析不同雨水系统改造措施方案对径流深、节点和管道的雨洪控制效果.情景模拟结果表明:3场强降雨下,绿色基础措施组合(SS7)在所有用地布局情景中对径流深的控制效果均为最优,其中中长历时强降雨下的削减比最高,达到了78%;在节点控制方面,由于3种绿色基础措施与增大管径组合措施(SS8)具备下渗、滞留和快排等特性,在3场降雨中,对节点的洪流流量和洪流时间的控制效果均为最优,接近100%;在管道控制方面,3种含绿色基础措施的组合方案(SS7,8,9)对管道满流时间与峰值流量发生时间的控制较好.通过对比这3种组合措施方案发现,在短历时强降雨中,3种绿色基础措施与蓄水池组合措施方案下(SS9)管道满流时间最短,峰值流量发生时间最迟;中长历时强降雨中3者差别不大;长历时强降雨中3种绿色基础措施组合下(SS7)管道满流时间最短,峰值流量发生时间最迟.
        3 universal green infrastructures(green roof, vegetative swale and permeable pavement) and 2 grey infrastructure mitigations(large diameter tube & reservoir) were selected to design 9 types of storm water drainage system modification scenarios in Fuzhou University campus. Under different extreme weather conditions(3 recorded rainfall events with different duration), SWMM model was used to analyze urban stormwater and flood control effect under different simulation scenarios(SS1~SS9). The control effect included runoff depth, node J8 flood flow and flood time, peak time and full flow time in C8 pipeline. The simulations results showed that simulation scenarios including green infrastructure had better control effect.Compared to other simulation scenarios, combinations of green roofs, vegetative swales and continuous permeable pavement systems(SS7) exhibited the best control effect on runoff depth under 3 rainfall events, the reduction ratio under the middle duration rainfall event was the highest, reaching 78%. While combinations of green roofs, vegetative swales, continuous permeable pavement systems and large diameter tubes(SS8, with the characteristics of infiltration, retention and quick drainage) displayed the best control effect on node J8 flood flow and flood time under 3 rainfall events, reaching 100%. On the pipe flood control aspect, three combinations including green roofs, vegetative swales, continuous permeable pavement systems(SS7, SS8 and SS9) had a better effect on peak flow and full flow time in C8 pipeline than other simulation scenarios.Combinations of green roofs, vegetative swales, continuous permeable pavement systems and reservoirs(SS9) had the minimum full flow time and latest peak time in the short duration rainfall event. Combinations of green roofs, vegetative swales and continuous permeable pavement systems(SS7) had the minimum full flow time and latest peak time in the long duration rainfall event. Three combinations(SS7, SS8 and SS9) had no distinct differences on pipeline flood control in the middle duration rainfall event.
引文
[1] Kalnay E, Cai M. Impact of urbanization and land-use change on climate[J]. Nature, 2003,423(6939):528-531.
    [2]刘珍环,李猷,彭建.城市不透水表而的水环境效应研究进展[J].地理科学进展,2011,3:275-281.Liu Z H, Li Q, Peng J. Progress and perspective of the research on hydrological effects of urban impervious surface on water environment[J]. Progress in Geography, 2013,3:275-281.
    [3] Suriya S, Mudgal B V. Impact of urbanization on flooding:the Thirusoolam sub watershed-a case study[J]. Journal of Hydrology,2012,412(1):210-219.
    [4]郑鹏,林韵,潘文斌,等.基于HEC-HMS模型的八一水库流域洪水重现期研究[J].生态学报,2013,33(4):1268-1275.Zheng P, Lin Y, Pan W B, et al. Flood return period analysis of the Bayi Reservoir watershed based on HEC-HMS Model[J]. Acta Ecologica Sinica, 2013,33(4):1268-1275.
    [5] Caradot N, Granger D, Chapgier J, et al. Urban flood risk assessment using sewer flooding databases[J]. Water science and technology,2011,64(4):832-840.
    [6] Stevens M. Cities and flooding:a guide to integrated urban flood risk management for the 21st century by Abhas Jha, Robin Bloch, Jessica Lamond,and other contributors[J]. Journal of Regional Science,2012,52(5):885-887.
    [7] The president's council on sustainable development. Towards a sustainable America:advancing prosperity, opportunity, and a healthy environment for the 21st century[R]. Office of Scientific&Technical Information Technical Reports, USA, 1999.
    [8] Lee J, Bae K H, Younos T. Conceptual framework for decentralized green water-infrastructure systems[J]. Water&Environment Journal,2018,32(1):112-117.
    [9] Woznicki S A,Hondula K L, Jamagin S T. Effectiveness of landscape-based green infrastructure for stormwater management in suburban catchments[J]. Hydrological Processes, 2018,32(15):2346-2361.
    [10] Fitzgerald J, Laufer J. Governing green stormwater infrastructure:the Philadelphia experience[J]. Local Environment, 2017,22(2):256-268.
    [11]王石,陈丽媛,孙翔,等.从“大截排”到清源和低影响开发——基于水质目标约束的情景模拟与规划[J].中国环境科学,2017,37(10):3981-3990.Wang S,Chen L Y, Sun X,et al. From rainwater and sewage interception to separation system combined with low impact development reconstruction in urban built-up area:a water quality constrained scenario stimulation and programming[J]. China Environmental Science, 2017,37(10):3981-3990.
    [12] Joksimovic D, Alam Z. Cost efficiency of low impact development(LID)stormwater management practices[J]. Procedia Engineering,2014,89:734-741.
    [13] Jang S, Cho M, Yoon J, et al. Using SWMM as a tool for hydrologic impact assessment[J]. Desalination, 2007,212(1):344-356.
    [14]陈虹,李家科,李亚娇,等.暴雨洪水管理模型SWMM的研究及应用进展[J].西北农林科技大学学报:自然科学版,2015,43(12):225-234.Chen H, Li J K, Li Y J, et al. Progress on research and application of storm water management model(SWMM)[J]. Journal of Northwest A&F University(Natural Science Edition), 2015,43(12):225-234.
    [15]谭明豪,姚娟娟,张智,等.基于Morris的SWMM水质参数灵敏度分析与应用[J].水资源与水工程学报,2015,26(6):117-122.Tan H M, Yao J J, Zhang Z, et al. Analysis and application of sensitivity of water quality parameter based on SWMM of Morris[J]. Journal of Water Resources and Water Engineering, 2015,26(6):117-122.
    [16]李春林,胡远满,刘淼,等.SWMM模型参数局部灵敏度分析[J].生态学杂志,2014,33(4):1076-1081.Li C L, Hu Y M, Liu M, et al. Local sensitivity analysis of parameters in storm water management model[J]. Chinese Journal of Ecology,2014,33(4):1076-1081.
    [17]林杰,黄金良,杜鹏飞,等.城市降雨径流水文模拟的参数局部灵敏度及其稳定性分析[J].环境科学,2010,31(9):2023-2028.Lin J, Huang J L, Du P F, et al. Local sensitivity and its stationarity analysis for urban rainfall runoff modeling[J]. Environmental Science,2010,31(9):2023-2028.
    [18]黄金良,杜鹏飞,何万谦,等.城市降雨径流模型的参数局部灵敏度分析[J].中国环境科学,2007,27(4):549-553.Huang J L, Du P F, He W Q, et al. Local sensitivity analysis for urban rainfall runoff modeling[J]. China Environmental Science,2007,27(4):549-553.
    [19]桑国庆,曹升乐,郝玉伟,等.雨洪滞留池与蓄水池模式下的雨洪过程研究[J].水电能源科学,2012,30(6):45-48.Sang G Q, Cao S Y, Hao Y W, et al. Research on urban storm flood process under mode of detention pond and water storage tank[J].Water Resources and Power, 2012,30(6):45-48.
    [20] Rossman L A. Storm water management model user's manual version5.1[R]. Report EPA-600/R-14/413b. Athens, GA, USA:US Environmental Protection Agency, 2015.
    [21] Ahiablame L M, Engel B A, Chaubey I. Effectiveness of low impact development practices in two urbanized watersheds:retrofitting with rain barrel/cistern and porous pavement[J]. Journal of Environmental Management, 2013,119(119C):151-161.
    [22] Zahmatkesh Z, Burian S J, Karamouz M, et al. Low-impact development practices to mitigate climate change effects on urban stormwater runoff case study of New York City[J]. Journal of Irrigation&Drainage Engineering, 2015,141(1):04014043.
    [23] Qin H P, Li Z X, Fu G. The effects of low impact development onurban flooding under different rainfall characteristics[J]. Journal of Environmental Management, 2013,129(18):577-585.
    [24] Zhang S, Guo Y. SWMM simulation of the storm water volume control performance of permeable pavement systems[J]. Journal of Hydrologic Engineering, 2015,20(8):06014010.
    [25] Holman-Dodds J K, Bradley A A, Potter K W. Evaluation of hydrologic benefits of infiltration based urban storm water management[J]. Jawra Journal of the American Water Resources Association, 2003,39(1):205-215.
    [26] Rosa D J, Clausen J C, Dietz M E. Calibration and verification of SWMM for low impact development[J]. Jawra Journal of the American Water Resources Association, 2015,51(3):746-757.
    [27] Lucas W C, Sample D J. Reducing combined sewer overflows by using outlet controls for green stormwater infrastructure:case study in Richmond, Virginia[J]. Journal of Hydrology, 2015,520:473-488.
    [28]潘文斌,柯锦燕,郑鹏,等.低影响开发对城市内涝节点雨洪控制效果研究——不同降雨特性下的情景模拟[J].中国环境科学,2018,38(7):2555-2563.Pan W B, Ke J Y, Zheng P, et al. Flood control effects of low-impact development on urban waterlogging node under different rainfall characteristics[J]. China Environmental Science, 2018,38(7):2555-2563.
    [29]陈奕.福州市暴雨强度公式优化研究[J].给水排水,2013,39(10):36-40.Chen Y. The optimization of rainstorm intensity formula for the Fuzhou City[J]. Water&Wastewater Engineering, 2013,39(10):36-40.
    [30]北京市市政工程设计研究总院.给水排水设计手册.第5册,城镇排水[M].北京:中国建筑工业出版社,2004.Beijing general municipal engineering design&research institute Co,Ltd. Design of water supply and drainage manual(third edition)(volume 5),urban drainage[M]. Beijing:China architecture&building press, 2004:52-69.
    [31]张大伟,赵冬泉,陈吉宁,等.芝加哥降雨过程线模型在排水系统模拟中的应用[J].给水排水,2008,(S1):354-357.Zhang D W, Zhao D Q, Chen J N, et al. The application of Chicago rainfall process line model in the drainage system in simulation[J].Water&Wastewater Engineering, 2008,(S1):354-357.
    [32] Lenhart T, Eckhardt K, Fohrer N, et al. Comparison of two different approaches of sensitivity analysis[J]. Physics&Chemistry of the Earth, 2002,27(9):645-654.
    [33]刘兴坡.基于径流系数的城市降雨径流模型参数校准方法[J].给水排水,2009,3 5(11):213-217.Liu X P. Parameter calibration method for urban rainfall-runoff model based on runoff coefficient[J]. Water&Wastewater Engineering, 2009,35(11):213-217.
    [34]何福力.基于SWMM的开封市雨洪模型应用研究[D].郑州:郑州大学,2014.He F L. The applied research of stom water in Kaifeng City based on storm water management model(SWMM)-the case of Yunliang River group project[D]. Zhengzhou:Zhengzhou University, 2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700