石墨烯纳米片增韧Al_2O_3基纳米复合陶瓷刀具材料
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Alumina-based nanocomposite ceramic cutting tool materials toughened by graphene nanoplates
  • 作者:孟祥龙 ; 衣明东 ; 肖光春 ; 陈照强 ; 许崇海
  • 英文作者:MENG Xiang-long;YI Ming-dong;XIAO Guang-chun;CHEN Zhao-qiang;XU Chong-hai;School of Mechanical and Automotive Engineering,Qilu University of Technology;Key Laboratory of Advanced Manufacturing and Measurement & Control Technology for Light Industry in Universities of Shandong,Qilu University of Technology;School of Mechanical Engineering,Shandong University;
  • 关键词:石墨烯纳米片 ; 增韧补强 ; 陶瓷刀具 ; 力学性能 ; 切削性能
  • 英文关键词:graphene nanoplate;;toughening and strengthening;;ceramic cutting tool;;mechanical property;;cutting performance
  • 中文刊名:CLGC
  • 英文刊名:Journal of Materials Engineering
  • 机构:齐鲁工业大学机械与汽车工程学院;齐鲁工业大学山东省高校轻工装备先进制造与测控技术重点实验室;山东大学机械工程学院;
  • 出版日期:2019-01-11 11:00
  • 出版单位:材料工程
  • 年:2019
  • 期:v.47;No.428
  • 基金:国家自然科学基金资助项目(51575285);; 山东省自然科学基金资助项目(2016ZR1301AR4);; 山东省高校科技计划资助项目(J14LB02)
  • 语种:中文;
  • 页:CLGC201901005
  • 页数:7
  • CN:01
  • ISSN:11-1800/TB
  • 分类号:29-35
摘要
以石墨烯纳米片作为增强相,采用热压烧结工艺制备石墨烯纳米片增韧Al_2O_3基纳米复合陶瓷刀具材料。进行石墨烯纳米片分散实验,研究石墨烯纳米片添加量对刀具材料断裂韧度、抗弯强度和硬度的影响,观察其微观结构和形貌。结果表明:聚乙烯吡咯烷酮(PVP)为石墨烯纳米片的优选分散剂,当PVP添加量为石墨烯纳米片质量的60%时,分散效果最佳;当石墨烯纳米片添加量为0.75%(体积分数)时,刀具材料的断裂韧度和抗弯强度分别达到7.1MPa·m~(1/2)和663MPa,与未添加石墨烯纳米片的组分相比分别提高了31%和15%;石墨烯纳米片呈卷曲状结构弥散分布于基体材料中,其增韧机理为石墨烯纳米片拉断、拔出和裂纹偏转。与未添加石墨烯的刀具相比,添加石墨烯纳米片的刀具的主切削力、切削温度和前刀面摩擦因数明显降低,表现出良好的减摩、耐磨性。
        Graphene nanoplates(GNPs), as toughening phase, toughened alumina-based nanocomposites ceramic cutting tool materials were fabricated by hot-pressing technology. The dispersing experiment of the GNPs was performed. The effects of different GNPs contents on the fracture toughness, flexural strength and hardness of the as-sintered ceramic cutting tool materials were investigated. The microstructure and morphology of GNPs were also observed. The results show that polyvinyl pyrrolidone(PVP) is the optimized dispersant of GNPs. When PVP addition is the 60%(mass fraction) of GNPs, the GNPs dispersion effect is the best. When GNPs addition is 0.75%(volume fraction), the fracture toughness and flexural strength of the cutting tool material reach up to 7.1 MPa·m~(1/2) and 663 MPa, which increase by 31% and 15% compared with that without GNPs addition cutting tool material. The crimped GNPs disperse well in the matrix material. The main toughening mechanisms include GNPs rupture, GNPs pull-out and cracks defection. Comparing with no GNPs addition cutting tool material, GNPs toughened cutting tool material shows lower main cutting force, cutting temperature and rake friction coefficient, and better wear resistance.
引文
[1] 贺旭东,明伟伟,景璐璐,等.高效加工刀具技术研究现状及发展趋势[J].航空制造技术,2016,502(7):55-59. HE X D,MING W W,JING L L,et al. Research status and development trend of high performance machining tools[J]. High Efficiency Machining Technology,2016,502(7):55-59.
    [2] 何柏林,孙佳.陶瓷基复合材料增韧技术的研究进展[J].粉末冶金工业,2009,19(4):48-53. HE B L,SUN J. Progress in ceramic matrix composite toughening technology[J]. Powder Metallurgy Industry,2009,19(4):48-53.
    [3] KITIWAN M,ATONG D. Preparation of Al2O3-TiC composites and their cutting performance[J]. Journal of Solid Mechanics & Materials Engineering,2007,1(7):938-946.
    [4] LI X K,QIU G M,QIU T,et al. Al2O3/TiCN-0.2%Y2O3 composite prepared by hp and its cutting performance[J]. Journal of Rare Earths,2007,25(Suppl 1):37-41.
    [5] LEE D Y,YOON D H. Properties of alumina matrix composites reinforced with SiC whisker and carbon nanotubes[J]. Ceramics International,2014,40(9):14375-14383.
    [6] FAN J P,ZHAO D Q,WU M S,et al. Preparation and microstructure of multi-wall carbon nanotubes-toughened Al2O3 composite[J]. Journal of the American Ceramic Society,2006,89(2):750-753.
    [7] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.
    [8] BOLOTIN K I,SIKES K J,JIANG Z,et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications,2008,146(9/10):351-355.
    [9] BALANDIN A A,GHOSH S,BAO W,et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907.
    [10] LEE C,WEI X,KYSAR J W,et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388.
    [11] PORWAL H,TATARKO P,GRASSO S,et al. Graphene reinforced alumina nano-composites[J]. Carbon,2013,64(11):359-369.
    [12] MIRANZO P,GARCíA E,RAMíREZ C,et al. Anisotropic thermal conductivity of silicon nitride ceramics containing carbon nanostructures[J]. Journal of the European Ceramic Society,2012,32(8):1847-1854.
    [13] MENG X L,XU C H,XIAO G C,et al. Microstructure and anisotropy of mechanical properties of graphene nanoplate toughened Al2O3-based ceramic composites[J]. Ceramic International,2016,42(14):16090-16095.
    [14] 燕绍九,陈翔,洪起虎,等.石墨烯增强铝基纳米复合材料研究进展[J].航空材料学报,2016,36(3):57-70. YAN S J,CHEN X,HONG Q H,et al. Graphene reinforced aluminum matrix nanocomposites[J]. Journal of Aeronautical Materials,2016,36(3):57-70.
    [15] 左银泽,陈亮,朱斌,等. 纳米氧化锌负载氧化石墨烯/环氧树脂复合材料性能研究[J].材料工程,2018,46(5):22-28. ZUO Y Z,CHEN L,ZHU B,et al. Properties of graphene oxide loaded by nano-ZnO/epoxy resin composites[J]. Journal of Materials Engineering,2018,46(5):22-28.
    [16] 王飞,贾书海,唐振华,等.石墨烯纳米复合材料光驱动技术的研究进展[J].材料工程,2018,46(4):12-22. WANG F,JIA S H,TANG Z H,et al. Research progress on light-driven technology for graphene-based nanocomposites[J]. Journal of Materials Engineering,2018,46(4):12-22.
    [17] CHEN Y F,BI J Q,YIN C L,et al. Microstructure and fracture toughness of graphene nanosheets/alumina composites[J]. Ceramics International,2014,40(9):13883-13889.
    [18] CENTENO A,ROCHA V G,ALONSO B,et al. Graphene for tough and electro conductive alumina ceramics[J]. Journal of the European Ceramic Society,2013,33(15/16):3201-3210.
    [19] 魏伟,吕伟,杨全红.高浓度石墨烯水系分散液及其气液界面自组装膜[J].新型炭材料,2011,26(1):36-40. WEI W,LV W,YANG Q H. High-concentration graphene aqueous suspension and a membrane self-assembled at the liquid-air interface[J]. New Carbon Materials,2011,26(1):36-40.
    [20] KONIOS D,STYLIANAKIS M M,STRATAKIS E, et al. Dispersion behaviour of graphene oxide and reduced graphene oxide[J]. Journal of Colloid & Interface Science,2014,430:108-112.
    [21] HU W Q,ZHU Z Z,JIN J,et al. Synthesis and characterization of liquid crystalline polyester/graphene and a study of their properties[J]. Journal of Nanoscience & Nanotechnology,2012,12(3):2477-2483.
    [22] NIETO A,ZHAO J M,HAN Y H,et al. Microscale tribological behavior and in vitro biocompatibility of graphene nanoplatelet reinforced alumina[J]. Journal of the Mechanical Behavior of Biomedical Materials,2016,61:122-134.
    [23] LENKA K,ANNAMARIA D,PAVOL H,et al. Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites[J]. Scripta Materialia,2012,66(10):793-796.
    [24] MARIA M,ALEXANDRA K,ZOLTáN K,et al. Tribological characterization of silicon nitride/multilayer graphene nanocomposites produced by HIP and SPS technology[J]. Tribology International,2016,93:269-281.
    [25] 邓建新,曹同坤,艾兴. Al2O3/TiC/CaF2自润滑陶瓷刀具切削过程中的减摩机理[J]. 机械工程学报,2006,42(7):109-113. DENG J X,CAO T K,AI X. Friction reducing mechanisms of Al2O3/TiC/CaF2 self-lubricating ceramic tools in machining processes[J]. Journal of Mechanical Engineering,2006,42(7):109-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700