铁氧化物氧同位素示踪原理及其在铁矿成因研究中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Oxygen isotope geochemistry of Fe oxide minerals and its applications to the study of iron ore deposit
  • 作者:骆文娟 ; 孙剑
  • 英文作者:LUO Wen-juan;SUN Jian;MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences;Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, MNR Key Laboratory of Isotope Geology, Institute of Geology, Chinese Academy of Geological Sciences;
  • 关键词:氧同位素 ; 磁铁矿 ; 赤铁矿 ; 铁矿 ; 地球化学
  • 英文关键词:oxygen isotopes;;magnetite;;hematite;;iron ore deposit;;geochemistry
  • 中文刊名:YSKW
  • 英文刊名:Acta Petrologica et Mineralogica
  • 机构:中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价重点实验室;中国地质科学院地质研究所自然资源部同位素地质重点实验室自然资源部深地动力学重点实验室;
  • 出版日期:2019-01-25
  • 出版单位:岩石矿物学杂志
  • 年:2019
  • 期:v.38;No.177
  • 基金:国家自然科学基金资助项目(41403009,41503041,41773018);; 中央公益性科研院所基本科研业务费专项基金(J1624,K1412)~~
  • 语种:中文;
  • 页:YSKW201901012
  • 页数:10
  • CN:01
  • ISSN:11-1966/P
  • 分类号:123-132
摘要
铁氧化物(以磁铁矿和赤铁矿最为常见)是铁矿床中最主要的含铁矿物,其氧同位素地球化学对于铁矿的成因研究具有重要意义。本文在总结了铁氧化物氧同位素分馏理论、不同成因类型铁矿形成过程的基础上,对世界主要类型铁矿铁氧化物的氧同位素组成特征和分馏规律进行了总结,并以新疆智博、查岗诺尔、备战海相火山岩型铁矿为例,开展了磁铁矿氧同位素地球化学研究。结果发现,这些铁矿中磁铁矿氧同位素组成δ18OSMOW集中在1‰~3‰之间,表明其形成于岩浆作用主导的高温岩浆/岩浆-热液环境,后期低温热液作用对铁的成矿作用影响有限。
        As Fe oxide minerals such as magnetite and hematite are the main Fe-bearing minerals in iron ore deposits, their oxygen isotope geochemistry has great potentials in tracing the genesis of iron ore deposits. In this paper,based on the summarization of the basic principles of oxygen isotope fractionation in Fe oxide minerals and the general processes related to iron mineralization, the authors calculated oxygen isotope distributions of Fe oxide minerals in different types of iron ores, and the results were compared with the data previously obtained from various iron ores. Then a case study was carried out on submarine volcanic-hosted iron ore deposits from Zhibo, Chagangnuoer,and Beizhan iron ore deposits in Xinjiang for their oxygen isotope compositions of magnetite. The results show that the magnetite of these deposits have δ18OSMOWmainly between 1‰ and 3‰, indicating that their formation was mainly controlled by high-temperature magmatic or magmatic-hydrothermal processes, with the late-stage low-temperature alteration having little effect on the iron mineralization.
引文
Bao H and Koch P L.1999.Oxygen isotope fractionation in ferric oxidewater systems:Low temperature synthesis[J].Geochimica et Cosmochimica Acta,63:599~613.
    Becker R H and Clayton R N.1976.Oxygen isotope study of a Precambrian banded iron-formation,Hamersley Range,Western Australia[J].Geochimica et Cosmochimica Acta,40:1 153~1 165.https://doi.org/10.1016/0016-7037(76)90151-4.
    Chen Zhensheng and Zhang Ligang.1992.Hydrogen and oxygen isotope fractionation mechanism in the hydrothermal system and its geological significance[J].Acta Geologica Sinica,66:158~169(in Chinese with English abstract).
    Dill H G.2010.The“chessboard”classification scheme of mineral deposits:Mineralogy and geology from aluminum to zirconium[J].Earth Science Reviews,100:1~420.
    Hong Wei,Zhang Zuoheng,Li Fengming,et al.2012.Stable isotopic characteristics of the Chagangnuoer iron deposit in Western Tianshan,Xinjiang and its geological significance[J].Rock Mineral Anal.,31:1 077~1 087(in Chinese with English abstract).
    Jiang Z,Zhang Z,Wang Z,et al.2014.Geology,geochemistry,and geochronology of the Zhibo iron deposit in the Western Tianshan,NW China:Constraints on metallogenesis and tectonic setting[J].Ore Geology Reviews,57:406~424.
    Jonsson E,Troll V R,H9gdahl K,et al.2013.Magmatic origin of giant'Kiruna-type'apatite-iron-oxide ores in Central Sweden[J].Sci.Rep.,3.
    Li Yanhe,Duan Chao,Han Dan,et al.2017.Oxygen isotopic discriminant marker of magmatic iron deposits:Ningwu porphyrite iron ore as an example[J].Acta Petrologica Sinica,33:3 411~3 421(in Chinese with English abstract).
    Li Yanhe,Hou Kejun,Wan Defang,et al.2010.Formation mechanism of Precambrian banded iron formation and atmosphere and ocean during Early stage of the Earth[J].Acta Geologica Sinica,84:1 359~1 373(in Chinese with English abstract).
    Luo W,Zhang Z,Duan S,et al.2018.Geochemistry of the Zhibo submarine intermediate-mafic volcanic rocks and associated iron ores,Western Tianshan,Northwest China:Implications for ore genesis[J].Geological Journal,https://doi.org/10.1002/gj.3 243.
    Mu Baolei.1991.A preliminary the study on the oxygen isotope composition of the Panzhihua Layered Basic intrusion[J].Acta Petrologica et Mineralogica,10:29~36(in Chinese with English abstract).
    Mu Baolei and Qiang Demei.1981.Oxygen isotopic composition of magnetite and diopside in rock containing ore and oxygen isotopic equilibrium temperature of Fan Shan Complex[J].Acta Scicentiarum Naturalum Universitis Pekinesis,2:85~93(in Chinese with English abstract).
    Nystr9m J O,Billstr9m K,Henríquez F,et al.2008.Oxygen isotope composition of magnetite in iron ores of the Kiruna type in Chile and Sweden[J].GFF,130:177~188.
    Pat Shanks W C.2014.Stable isotope geochemistry of mineral deposits[A].Holland H D and Turekian K K.Treatise on Geochemistry[C].Elsevier,59~85.
    Robb L.2005.Introduction to Ore-Forming Processes[M].Blackwell Science Ltd.
    Sun Jing,Du Weihe,Wang Dezhong,et al.2009.Geological characteristics and genesis of the Heishan V-Ti magnetite deposit in Damiao,Chengde Hebei Province[J].Acta Geologica Sinica,83:1 344~1 364(in Chinese with English abstract).
    Thorne W,Hagemann S,Vennemann T,et al.2009.Oxygen isotope compositions of iron oxides from high-grade BIF-hosted iron ore deposits of the Central Hamersley Province,Western Australia:Constraints on the evolution of hydrothermal fluids[J].Economic Geology,104:1 019~1 035.
    Urey H C.1947.The thermodynamic properties of isotopic substances[J].Journal of the Chemical Society(Resumed),562~581.
    Yao Shuzhen.1988.Various origins of water in ore-bearing hydrothermal system[J].Geological Science and Technology Information,7:4~80(in Chinese with English abstract).
    Yapp C J.1990a.Oxygen isotope effects associated with the solid-stateα-Fe OOH toα-Fe2O3phase transformation[J].Geochimica et Cosmochimica Acta,54:229~236.
    Yapp C J.1990b.Oxygen isotopes in iron(III)oxides:1.Mineral-water fractionation factors[J].Chemical Geology,85:329~335.
    Yapp C J.1990c.Oxygen isotopes in iron(III)oxides:2.Possible constraints on the depositional environment of a Precambrian quartz-hematite banded iron formation[J].Chemical Geology,85:337~344.
    Zhai Yusheng,Yao Shuzhen and Cai Keqin.2011.Mineral Deposits[M].Beijing:Geological Publishing House(in Chinese).
    Zhang X,Klemd R,Gao J,et al.2015.Metallogenesis of the Zhibo and Chagangnuoer volcanic iron oxide deposits in the Awulale Iron Metallogenic Belt,Western Tianshan orogen,China[J].Journal of Asian Earth Sciences,113:151~172.https://doi.org/10.1016/j.jseaes.2014.06.004.
    Zhang Zuoheng,Hong Wei,Jiang Zongsheng,et al.2012.Geological features,mineralization types and metallogenic setting of Late Paleozoic iron deposits in western Tianshan Mountains of Xinjiang[J].Mineral Deposits,31:941~964(in Chinese with English abstract).
    Zhang Zhaochong,Hou T,Santosh M,et al.2013.Spatio-temporal distribution and tectonic settings of the major iron deposits in China:An overview[J].Ore Geology Reviews,1~17.
    Zhao Yiming and Lin Wenwei.1990.Skarn Deposits of China[M].Beijing:Geological Publishing House(in Chinese with English abstract).
    Zhao Z F and Zheng Y F.2003.Calculation of oxygen isotope fractionation in magmatic rocks[J].Chemical Geology,193:59~80.
    Zheng Y.1991.Calculation of oxygen isotope fractionation in metal oxides[J].Geochimica et Cosmochimica Acta,55:2 299~2 307.
    Zheng Y F.1993.Calculation of oxygen isotope fractionation in anhydrous silicate minerals[J].Geochimica et Cosmochimica Acta,57:1 079~1 091.
    Zheng Y F.1995.Oxygen isotope fractionation in magnetites:Structural effect and oxygen inheritance[J].Chemical Geology,121:309~316.
    Zheng Y F.1998.Oxygen isotope fractionation between hydroxide minerals and water[J].Physics and Chemistry of Minerals,25:213~221.
    Zheng Yongfei and Chen Jiangfeng.2000.Stable Isotope Geochemistry[M].Beijing:Science Press(in Chinese).
    陈振胜,张理刚.1992.热液体系氢、氧同位素分馏机制及其地质意义[J].地质学报,66:158~169.
    洪为,张作衡,李凤鸣,等.2012.新疆西天山查岗诺尔铁矿床稳定同位素特征及其地质意义[J].岩矿测试,31:1 077~1 087.
    李延河,段超,韩丹,等.2017.矿浆型铁矿的氧同位素判别标志:以宁芜玢岩铁矿为例[J].岩石学报,33:3 411~3 421.
    李延河,侯可军,万德芳,等.2010.前寒武纪条带状硅铁建造的形成机制与地球早期的大气和海洋[J].地质学报,84:1 359~1 373.
    牟保磊.1991.攀枝花层状基性侵入体氧同位素初步研究[J].岩石矿物学杂志,10:29~36.
    牟保磊,强德美.1981.矶山杂岩体含矿岩带磁铁矿辉石氧同位素及同位素平衡温度[J].北京大学学报(自然科学版),2:85~93.
    孙静,杜维河,王德忠,等.2009.河北承德大庙黑山钒钛磁体矿床地质特征与成因探讨[J].地质学报,83:1 344~1 364.
    姚书振.1988.成矿热液系统中水的多来源研究综述[J].地质科技情报,3:4~80.
    翟裕生,姚书振,蔡克勤.2011.矿床学[M].北京:地质出版社.
    张作衡,洪为,蒋宗胜,等.2012.新疆西天山晚古生代铁矿床的地质特征、矿化类型及形成环境[J].矿床地质,31:941~964.
    赵一鸣,林文蔚.1990.中国矽卡岩矿床[M].北京:地质出版社.
    郑永飞,陈江峰.2000.稳定同位素地球化学[M].北京:科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700