氨基修饰的金属有机框架Cu_3(BTC)_2的制备及其CO_2吸附性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of metal-organic frameworks Cu_3(BTC)_2 with amino-functionalization for CO_2 adsorption
  • 作者:鲁雪婷 ; 蒲彦锋 ; 李磊 ; 赵宁 ; 王峰 ; 肖福魁
  • 英文作者:LU Xue-ting;PU Yan-feng;LI Lei;ZHAO Ning;WANG Feng;XIAO Fu-kui;State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:氨基修饰 ; Cu_3(BTC)_2 ; CO_2吸附
  • 英文关键词:amino-functionalized;;Cu_3(BTC)_2;;CO_2 adsorption
  • 中文刊名:RLHX
  • 英文刊名:Journal of Fuel Chemistry and Technology
  • 机构:中国科学院山西煤炭化学研究所煤转化国家重点实验室;中国科学院大学;
  • 出版日期:2019-03-27 09:33
  • 出版单位:燃料化学学报
  • 年:2019
  • 期:v.47
  • 基金:国家自然科学基金(21306217,21776294);; 山西省煤基重点科技攻关项目(MD2014-09);; 山西省自然科学基金(201601D102006,201801D121070)资助~~
  • 语种:中文;
  • 页:RLHX201903012
  • 页数:6
  • CN:03
  • ISSN:14-1140/TQ
  • 分类号:92-97
摘要
首先制备了嫁接氨基的均苯三甲酸,同时以其为原料通过溶剂热法合成了金属有机框架材料Cu_3(NH_2BTC)_2,利用XRD、N_2吸附-脱附、热重、红外、原位红外分析等表征手段对吸附剂进行了表征,并通过固定床测量穿透曲线的方法研究其CO_2吸附性能。结果表明,氨基被成功引入Cu_3(BTC)_2骨架中。氨基修饰的Cu_3(BTC)_2对CO_2有着较高的吸附容量,在10 kPa,50℃的条件下CO_2吸附量为1.41 mmol/g,这源于材料对于CO_2同时存在着物理吸附和化学吸附。
        The metal-organic framework of Cu_3(NH_2BTC)_2 was synthesized by solvothermal method with the prepared grafted amine-based trimesic acid as organic ligand. The synthesized adsorbent was characterized by XRD, N_2 adsorption-desorption, thermogravimetry, FT-IR and in-situ FT-IR. The performance of the CO_2 adsorption was studied by the breakthrough curve based on the fixed-bed reactor. The results showed that the amine groups had been successfully grafted into the skeleton of Cu_3(BTC)_2. The CO_2 adsorption capacity of Cu_3(NH_2BTC)_2 was improved to 1.41 mmol/g at 10 kPa and 50 ℃. The improvement of CO_2 uptake might due to the effect of both the physical and chemical adsorption of CO_2.
引文
[1] 刘植, 黄少鹏. 不同时间尺度下的大气CO2浓度与气候变化[J]. 第四纪研究, 2015, 35(6): 1458-1470.(LIU Zhi, HUANG Shao-peng. Multiple time scales of variations of atmospheric CO2 concentration and global climate[J]. Quat Sci, 2015, 35(6): 1458-1470.)
    [2] D'ALESSANDRO D M, SMIT B, LONG J R. Carbon dioxide capture: Prospects for new materials[J]. Angew Chem Int Ed, 2010, 49(35): 6058-6082.
    [3] LEE S-Y, PARK S-J. A review on solid adsorbents for carbon dioxide capture[J]. J Ind Eng Chem, 2015, 23: 1-11.
    [4] ZHANG Z J, ZHAO Y G, GONG Q H, LI Z, LI J. MOFs for CO2 capture and separation from flue gas mixtures: The effect of multifunctional sites on their adsorption capacity and selectivity[J]. Chem Commun, 2013, 49(7): 653-661.
    [5] SUMIDA K, ROGOW D L, MASON J S, MCDONALD T M, BLOCH E D, HERM Z R, BAE T H, LONG J R. Carbon dioxide capture in metal-organic frameworks[J]. Chem Rev, 2012, 112(2): 724-781.
    [6] LI J R, SCULLEY J, ZHOU H C. Metal-organic frameworks for separations[J]. Chem Rev, 2012, 112(2): 869-932.
    [7] WANG Q M, SHEN D M, BüLOW M, LAU M L, DENG S G, FITCH F R, LEMCOFF N O, SEMANSCIN J. Metallo-organic molecular sieve for gas separation and purification[J]. Microporous Mesoporous Mater, 2002, 55(2): 217-230.
    [8] CHUI S S Y, LO S M F, CHARMANT J P H, ORPEN A G, WILLIIAMS I D. A Chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283(5405): 1148-1150.
    [9] KRKLJUS I, HIRSCHER M. Characterizataion of hydrogen/deutetrium adsorption sites in nanoporous Cu-BTC by low-temperature thermal-desorption mass spectroscopy[J]. Microporous Mesoporous Mater, 2011, 142(2/3): 725-729.
    [10] 朱晨明.基于CO2吸附的分散型MOFs 复合材料的制备和吸附性能的研究[D]. 上海: 上海大学, 2016.(ZHU Chen-ming. Preparation and evaluation of hybrid MOFs for CO2 Adsorption[D]. Shanghai: Shanghai University, 2016.)
    [11] YE S, JIANG X, RUAN L W, LIU B, WANG Y M, ZHU J F, QIN L G. Post-combustion CO2 capture with the HKUST-1 and MIL-101(Cr) metal-organic frameworks: Adsorption, separation and regeneration investigations[J]. Microporous Mesoporous Mater, 2013, 179: 191-197.
    [12] SU X, BROMBERG L, MARTIS V, SIMEON F, HUQ A, HATTON T A. Postsynthetic functionalization of Mg-MOF-74 with tetraethylenepentamine: Structural characterization and enhanced CO2 adsorption[J]. ACS Appl Mater Inter, 2017, 9(12): 11299-11306.
    [13] MARTíNEZ F, SANZ R, ORCAJO G, BRIONES D, YáNGüEZ V. Amino-impregnated MOF materials for CO2 capture at post-combustion conditions[J]. Chem Eng Sci, 2016, 142: 55-61.
    [14] LU W G, WEI Z W, GU Z Y, LIU T F. Tuning the structure and function of metal-organic frameworks via linker design[J]. Chem Soc Rev, 2014, 43(16): 5561-5593.
    [15] MILLWARD A R, YAGHI O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. J Am Chem Soc, 2005, 127(51): 17998-17999.
    [16] RADA Z H, ABID H R, SUN H Q, WANG S B. Bifunctionalized metal organic frameworks, UiO-66-NO2-N (N = -NH2, -(OH)2, -(COOH)2), for enhanced adsorption and selectivity of CO2 and N2[J]. J Chem Eng Data, 2015, 60(7): 2152-2161.
    [17] DHANKHAR S S, SHARMA N, KUMAR S, KUMAR T J D, NAGARAJA C M. Rational design of a bifunctional, two-fold interpenetrated ZnII-metal-organic framework for selective adsorption of CO2 and efficient aqueous phase sensing of 2,4,6-trinitrophenol[J]. Chem Eur J, 2017, 23(64): 16204-16212.
    [18] ABID H R, RADA Z H, SHANG J, WANG S B. Synthesis, characterization, and CO2 adsorption of three metal-organic frameworks (MOFs): MIL-53, MIL-96, and amino-MIL-53[J]. Polyhedron, 2016, 120: 103-111.
    [19] RUBIN H N, REYNOLDS M M. Functionalization of metal-organic frameworks to achieve controllable wettability[J]. Inorg Chem, 2017, 56(9): 5266-5274.
    [20] XIN C L, ZHAN H J, HUANG X, LI H G, ZHAO N, XIAO F K, WEI W, SUN Y H. Effect of various alkaline agents on the size and morphology of nano-sized HKUST-1 for CO2 adsorption[J]. RSC Adv, 2015, 5(35): 27901-27911.
    [21] 董庆年. 红外光谱法[M]. 北京:石油化学工业出版社, 1977.(DONG Qing-nian. Infrared Spectroscopy [M]. Beijing: Petrochemical Industry Press, 1977.)
    [22] PEIKERT K, HOFFMANN F, FR?BA M. Amino substituted Cu3(btc)2: A new metal-organic framework with a versatile functionality[J]. Chem Commun, 2012, 48(91): 11196-11198.
    [23] 董寒, 张晓东, 李红欣, 侯扶林, 杨阳, 崔立峰. 金属有机骨架材料HKUST-1的制备及其应用进展[J]. 材料导报A, 2016, 30(12) : 114-119.(DONG Han, ZHANG Xiao-dong, LI Hong-xin, HOU Fu-lin, YANG Yang, CUI Li-feng. Progress in preparation of metal organic frameworks HKUST-1 and its application[J]. Mater Rev, 2016, 30(12): 114-119.)
    [24] BACSIK Z, AHLSTEN N, ZIADI A, ZHAO G Y, GARCIA-BENNETT A E, MARTíN-MATUTE B, HEDIN N. Mechanisms and kinetics for sorption of CO2 on bicontinuous mesoporous silica modified with n-Propylamine[J]. Langmuir, 2011, 27(17): 11118-11128.
    [25] BACSIK Z, RAMBABU A, GARCIA-BENNETT A E, HEDIN N. Temperature-induced uptake of CO2 and formation of carbamates in mesocaged silica modified with n-Propylamines[J]. Langmuir, 2010, 26(12): 10013-10024.
    [26] 李勇. 有机无极吸附材料的合成及其对CO2吸脱附性能的研究[D]. 太原: 中国科学院山西煤炭化学研究所, 2013.(LI Yong. Synthesis of the organic/inorganic adsorption materials and its adsorption/desorption performance for CO2[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Science, 2013.)
    [27] 辛春玲. 微介孔复合材料的制备及其对CO2吸附性能的研究[D]. 太原: 中国科学院山西煤炭化学研究所, 2015.(XIN Chun-ling. Synthesis of mesoporous/microporous composite and its adsorption/desorption performance for CO2[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Science, 2015.)Preparation of metal-organic frameworks Cu3(BTC)2 with amino-functionalization for CO2 adsorption*LU Xue-ting PU Yan-feng LI Lei ZHAO Ning WANG Feng XIAO Fu-kui制备了氨基修饰的金属有机框架Cu3(NH2BTC)2。氨基被成功嫁接后,材料的CO2吸附性能提高至1.41 mmol/g,并显示较好的稳定性。J Fuel Chem Technol, 2019, 47(3): 344-351CeO2掺杂对CaO基吸收剂CO2捕获性能的影响杨彬余钟亮李春玉周兴郭帅李光赵建涛房倚天

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700