氧含量对高功率脉冲磁控溅射AlCrSiON涂层高温摩擦学性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Oxygen Content on High-temperature Tribological Behaviors of AlCrSiON Coatings Deposited by High Power Impulse Magnetron Sputtering
  • 作者:唐鹏 ; 黎海旭 ; 吴正涛 ; 代伟 ; 王启民
  • 英文作者:TANG Peng;LI Hai-xu;WU Zheng-tao;DAI Wei;WANG Qi-min;School of Electromechanical Engineering, Guangdong University of Technology;
  • 关键词:AlCrSiON涂层 ; 高功率脉冲磁控溅射 ; 力学性能 ; 摩擦学性能
  • 英文关键词:AlCrSiON coatings;;high power impulse magnetron sputtering;;mechanical properties;;tribological behavior
  • 中文刊名:BMGC
  • 英文刊名:China Surface Engineering
  • 机构:广东工业大学机电工程学院;
  • 出版日期:2018-05-09 09:10
  • 出版单位:中国表面工程
  • 年:2018
  • 期:v.31;No.150
  • 基金:国家自然科学基金(51522502);; 中国博士后科学基金(2016M600641);; 广东省自然科学基金(2014A030311002,2016A050502056)~~
  • 语种:中文;
  • 页:BMGC201803016
  • 页数:9
  • CN:03
  • ISSN:11-3905/TG
  • 分类号:83-91
摘要
由于真空度的要求,制备氮化物涂层时将不可避免的会有氧的存在,因此了解氧元素对涂层性能的影响至关重要。采用高功率脉冲磁控溅射(HIPIMS)技术在Ar/N2/O2混合气氛下制备AlCrSiON涂层,研究氧含量(0%~30.4%,原子数分数)对涂层结构、力学性能和摩擦学性能的影响及作用机制。结果表明,AlCrSiN涂层由fcc-Cr N、β-Cr2N和hcp-Al N组成,AlCrSiON则由(Cr,Al)N、立方Cr2N和(Cr,Al)(O,N)组成。AlCrSiN涂层硬度为(14.3±1.8)GPa,随着氧含量增加至24.3%,涂层硬度增加至(20.1±3.0)GPa;继续增加氧含量则将导致涂层硬度下降。当环境温度由室温增加至400℃,涂层摩擦因数由0.6~0.7增加至0.9;温度升至800℃,涂层摩擦因数降至0.4。氧含量对涂层高温摩擦因数的影响较小,对涂层的磨损率却有着重要影响。当氧含量为30.4%时,AlCrSiON涂层具有最优耐磨损性能。
        Due to the requirement of vacuum degree, the presence of oxygen is inevitable when preparing the nitride coating,therefore, it is very important to understand the influence of oxygen element on the coating performance. AlCrSiON thin films were deposited by high power impulse magnetron sputtering(HIPIMS) in an Ar/N2/O2 mixture atmosphere. The influence of varous oxygen amounts(0%–30.4%) on the microstructure, mechanical properties and tribological behaviors of the AlCrSiON films was investigated. The results indicate that the oxygen-free AlCrSiN film is consist of fcc-Cr N, β-Cr2 N and hcp-Al N. The AlCrSiON films have the solid-solution of(Cr, Al)N, c-Cr2 N and(Cr, Al)(O, N) phases. The hardness firstly increases from(14.3±1.8) GPa for the AlCrSiN film to a maximum value of(20.1±3.0) GPa for the coating with the oxygen content of 24.3%and then decreases for larger oxygen contents. The average friction coefficients of the coatings firstly increase from 0.6-0.7 at RT to 0.9 at 400 ℃, and then decrease to 0.4 at 800 ℃. Varying the oxygen contents produces a slight impact on the friction coefficient of the coating. However, improving the oxygen content has significant impact on the wear rate. The AlCrSiON coating with 30.4% oxygen possesses the best wear resistance.
引文
[1]WU W W,CHEN W G,YANG S B.Design of Al Cr Si Nmultilayers and nanocomposite coating for HSS cutting tools[J].Surface&Coatings Technology,2015(351):803-810.
    [2]POLCAR T,CAVALEIRO A.High-temperature tribological properties of Cr Al N,Cr Al Si N and Al Cr Si N coatings[J].Surface&Coatings Technology,2011,206(6):1244-1251.
    [3]PARK I W,DONG S K,MOORE J J.Microstructures,mechanical properties,and tribological behaviors of Cr-AlN,Cr-Si-N,and Cr-Al-Si-N coatings by a hybrid coating system[J].Surface&Coatings Technology,2007,201(9-11):5223-5227.
    [4]NAKANO T,HOSHI K,BABA S.Effect of background gas environment on oxygen incorporation in Ti N films deposited using UHV reactive magnetron sputtering[J].Vacuum,2009,83(3):467-469.
    [5]VEPREK S,VEPREK-HEIJMAN M G J.Different approaches to superhard coatings and nanocomposites[J].Thin Solid Films,2005,476(1):1-29.
    [6]VEPREK S,ZHANG R F,VEPREK-HEIJMAN M G J.Superhard nanocomposites:Origin of hardness enhancement,properties and applications[J].Surface&Coatings Technology,2010,204(12-13):1898-1906.
    [7]VEPREK S,VEPREK-HEIJMAN M G J.Industrial applications of superhard nanocomposite coatings[J].Surface&Coatings Technology,2008,202(21):5063-5073.
    [8]马大衍,马胜利,徐可为,等.氧杂质致Ti-Si-N薄膜高硬度损失的机理[J].材料研究学报,2008,22(3):287-290.MA D Y,MA S L,XU K W,et al.The hardness degradation of Ti-Si-N coatings induced by oxygen impurity and its mechanisms[J].Chinese Journal of Material Research,2008,22(3):287-290(in Chinese).
    [9]JEONG D L.Microstructure and mechanical properties of quaternary Cr-Si-O-N films by a hybrid coating system[J].Surface&Coatings Technology,2012,206(18):3721-3727.
    [10]WANG Q M,WU Y N,GUO M H,et al.Ion-plated Al-O-Nand Cr-O-N films on Ni-base super alloys as diffusion barriers[J].Surface&Coatings Technology,2005,197(1):68-76.
    [11]CASTALDI L,KURAPOV D,REITER A,et al.Effect of the oxygen content on the structure,morphology and oxidation resistance of Cr-O-N coatings[J].Surface&Coatings Technology,2008,203(5-7):545-549.
    [12]MA D Y,MA S L,XU K W.The size effect of oxygen impurities on the hardness of Ti-Si-N coatings[J].Surface&Coatings Technology,2008,202(3):5512-5515.
    [13]SJOLEN J,KARLSSON L,BRAUN S,et al.Structure and mechanical properties of arc evaporated Ti-Al-O-N thin films[J].Surface&Coatings Technology,2007,201(14):6392-6403.
    [14]STUBER M,ALBERS U,LEISTE H,et al.Magnetron sputtering of hard Cr-Al-N-O thin films[J].Surface&Coatings Technology,2008,203(5):661-665.
    [15]BOBZIN K,BROGELMANN T.(Cr,Al)N/(Cr,Al)ON oxynitride coatings deposited by hybrid dc MS/HPPMS for plastics processing applications[J].Surface&Coatings Technology,2016,308:394-403.
    [16]BOBZIN K,BROGELMANN T.Hybrid dc MS/HPPMSPVD nitride and oxynitride hard coatings for adhesion and abrasion reduction in plastics processing[J].Surface&Coatings Technology,2016,308:349-359.
    [17]KARIMI A,MORSTEIN M,CSELLE T.Influence of oxygen content on structure and properties of multi-element AlCr Si ON oxynitride thin films[J].Surface&Coatings Technology,2010,204(16-17):2716-2722.
    [18]GENG D S,LI H X,ZHANG Q.Effect of incorporating oxygen on microstructure and mechanical properties of AlCr Si ON coatings deposited by arc ion plating[J].Surface&Coatings Technology,2017,310(10):223-230.
    [19]耿东森,吴正涛.基体偏压对电弧离子镀Al Cr Si ON涂层结构和热稳定性的影响[J].中国表面工程,2016,29(6):60-66.GENG D S,WU Z T.Influence of substrate bias on microstructure and thermal stability of Al Cr Si ON coatings deposited by arc ion plating[J].China Surface Engineering,2016,29(6):60-66(in Chinese).
    [20]王启民,张小波.高功率脉冲磁控溅射技术沉积硬质涂层研究进展[J].广东工业大学学报,2013,30(4):1-13.WANG Q M,ZHANG X B.Progress of high power impulse magnetron sputtering for deposition of hard coatings[J].Journal of Guangdong University of Technology,2013,30(4):1-13(in Chinese).
    [21]KULKARNI A P,JOSHI G G,JOSHI V G.Dry turning of AISI 304 austenitic stainless steel using Al Ti Cr N coated insert produced by HPPMS technique[J].Procedia Engineering,2013,128(64):737-746.
    [22]NAUMKIN ALEXANDER V,ANNA KRAUT-VASS,GAARENSTROOM STEPHEN W,et al.Binding energies for relevant bonds obtained from the XPS database of the National Institute of Standards and Technology[M/OL].http://srdata.nist.gov/xps/.
    [23]BARSHILIA H C,GHOSH M,SHASHIDHARA,et al.Deposition and characterization of Ti Al Si N nanocomposite coatings prepared by reactive pulsed direct current unbal-anced magnetron sputtering[J].Surface&Coatings Technology,2010,256(21):6420-6426.
    [24]CHENG Y H,BROWNE T,Heckerman B,et al.Influence of Si content on the structure and internal stress of the nanocomposite Ti Si N coatings deposited by large area filtered arc deposition[J].Journal of Physics D Applied Physics,2009,42(12):125415-125417.
    [25]WU Z L,LI Y G,WU B,et al.Effect of microstructure on mechanical and tribological properties of Ti Al Si N nanocomposite coatings deposited by modulated pulsed power magnetron sputtering[J].Thin Solid Films,2015,597(2):197-205.
    [26]KIM S H,KIM J K,KIM K H.Influence of deposition conditions on the microstructure and mechanical properties of Ti-Si-N films by DC reactive magnetron sputtering[J].Thin Solid Films,2002,360(S420-421):360-365.
    [27]QI Z B,SUN P,ZHU F P,et al.Relationship between tribological properties and oxidation behavior of Ti0.34Al0.66Ncoatings at elevated temperature up to 900℃[J].Surface&Coatings Technology,2013,231(3):267-272.
    [28]DENG J X,LIU A H.Dry sliding wear behavior of PVDTi N,Ti55Al45N,and Ti35Al65N coatings at temperatures up to600℃[J].International Journal of Refractory Metals&Hard Materials,2013,41(6):241-249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700