氮化硼基气凝胶微球的制备及其热性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Facile Fabrication of Boron Nitride-based Spongy Sphere and Its Property of Thermal Conduction
  • 作者:么依民 ; 孙娜 ; 曾小亮 ; 许建斌 ; 孙蓉 ; 汪正平
  • 英文作者:YAO Yimin;SUN Na;ZENG Xiaoliang;XU Jianbin;SUN Rong;WONG Chingping;Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences;Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences;Anhui University;The Chinese University of Hong Kong;Georgia Institute of Technology;
  • 关键词:液氮驱动 ; 冰模板法自组装 ; 氮化硼 ; 导热系数 ; 气凝胶球
  • 英文关键词:liquid nitrogen-driven;;ice-templated assembly;;boron nitride;;thermal conductivity;;spongy sphere
  • 中文刊名:JCJI
  • 英文刊名:Journal of Integration Technology
  • 机构:中国科学院深圳先进技术研究院;中国科学院大学深圳先进技术学院;安徽大学;香港中文大学;佐治亚理工学院;
  • 出版日期:2018-12-28 17:35
  • 出版单位:集成技术
  • 年:2019
  • 期:v.8;No.41
  • 基金:科技部国家重点研发项目(2017YFB0406000);; 中国科学院前沿科学重点研究项目(QYZDY-SSW-JSC010);; 广东省重点实验室(2014B030301014)
  • 语种:中文;
  • 页:JCJI201901008
  • 页数:10
  • CN:01
  • ISSN:44-1691/T
  • 分类号:70-79
摘要
该文提出了一种制备新型导热填料的方法:基于液氮驱动和冰模板法自组装,以氮化硼纳米片和银纳米颗粒为基本组装单元,制备了具有开放孔结构、内部互连的毫米级氮化硼气凝胶球。其中,对气凝胶球的成型机理进行了初步的探索,并对影响气胶球微观结构的因素,如制备气凝胶球浆料的固含量等进行研究。另外,该文将环氧树脂灌入到多孔气凝胶球中,从而制得氮化硼球/环氧树脂和氮化硼-银球/环氧树脂复合材料,并对其结构形貌和导热性能进行了研究,其中重点研究了氮化硼纳米片的表面改性、氮化硼微球的不同微观结构对复合材料的导热性能的影响。结果显示,当多孔微球的填充量为2.7 vol%时,氮化硼球/环氧树脂复合材料的面外导热系数达0.57 W/(m·K),而氮化硼-银球/环氧树脂复合材料的面外导热系数达0.64 W/(m·K),相比于纯环氧树脂的导热系数提高了276.5%。由此可见,氮化硼气凝胶球微球的加入可有效提高环氧树脂基复合材料的导热系数,在氮化硼纳米片表面负载银颗粒后可进一步提升复合材料的导热性能;液氮驱动的冰模板法自组装技术在制备导热填料领域具有巨大的应用前景。
        In this paper, a novel method based on the liquid nitrogen-driven rotation and ice-templated assembly was proposed to fabricate a new kind of boron nitride nanosheet(BNNS) and BNNS-Ag spongy miscrosphere used as thermally conductive fillers. The liquid nitrogen driven assembly ultimately led to hierarchical 3D BNNS frameworks with radial alignments, forming a sea urchin-like microstructure. BN sphere/epoxy resin composites were finally obtained by infiltrating the as-prepared spongy microsphere with epoxy resin followed by thermal curing. At the sphere content of 2.7 vol%, the through-plane thermal conductivity of BNNS sphere/epoxy resin composite reaches 0.57 W/(m·K), while the value for BNNSAg sphere/epoxy resin composite reaches 0.64 W/(m·K), indicating the corresponding enhancement of 276.5% towards pure epoxy resin. The obtained composites exhibit strong potential for thermal management applications for a variety of technological needs, particularly electronic packaging. The combination of liquid nitrogen-driven rotation and ice-templated assembly was demonstrated to a useful tool to fabricate efficient fillers for thermal management applications.
引文
[1]Tang B,Hu G,Gao H,et al.Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials[J].International Journal of Heat&Mass Transfer,2015,85:420-429.
    [2]Hu JT,Huang Y,Yao YM,et al.A polymer composite with improved thermal conductivity by constructing hierarchically ordered threedimensional interconnected network of BN[J].ACS Applied Materials&Interfaces,2017,9(15):13544-13553.
    [3]Sun JJ,Wang D,Yao YM,et al.Boron nitride microsphere/epoxy composites with enhanced thermal conductivity[J].High Voltage,2017,2(3):147-153.
    [4]Burger N,Laachachi A,Ferriol M,et al.Review of thermal conductivity in composites:mechanisms,parameters and theory[J].Progress in Polymer Science,2016,61:1-28.
    [5]Song WL,Wang P,Cao L,et al.Polymer/boron nitride nanocomposite materials for superior thermal transport performance[J].Angewandte Chemie International Edition,2012,51(26):6498-6501.
    [6]Zhi CY,Bando Y,Terao T,et al.Towards thermoconductive,electrically insulating polymeric composites with boron nitride nanotubes as fillers[J].Advanced Functional Materials,2009,19(12):1857-1862.
    [7]Huang XY,Iizuka T,Jiang PK,et al.Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites[J].The Journal of Physical Chemistry C,2012,116(25):13629-13639.
    [8]Yao YM,Zeng XL,Guo K,et al.The effect of interfacial state on the thermal conductivity of functionalized Al2O3 filled glass fibers reinforced polymer composites[J].Composites,2015,69:49-55.
    [9]刘运春,殷陶,陈元武,等.PPS/Al2O3导热复合材料的性能及其应用[J].工程塑料应用,2009(2):48-51.
    [10]He H,Fu RL,Shen Y,et al.Preparation and properties of Si3N4/PS composites used for electronic packaging[J].Composites Science and Technology,2007,67(11-12):2493-2499.
    [11]Burger N,Laachachi A,Ferriol M,et al.Review of thermal conductivity in composites:mechanisms,parameters and theory[J].Progress in Polymer Science,2016,61:1-28.
    [12]Renterla JD,Ramirez S,Malekpour H,et al.Strongly anisotropic thermal conductivity of freestanding reduced graphene oxide films annealed at high temperature[J].Advanced Functional Materials,2015,25(29):4664-4672.
    [13]Zhu H,Li Y,Fang Z,et al.Highly thermally conductive papers with percolative layered boron nitride nanosheets[J].ACS Nano,2014,8(4):3606-3613.
    [14]Cui Z,Oyer AJ,Glover AJ,et al.Large scale thermal exfoliation and functionalization of boron nitride[J].Small,2014,10(12):2352-2355.
    [15]Lin Y,Williams TV,Cao W,et al.Defect functionalization of hexagonal boron nitride nanosheets[J].Journal of Physical Chemistry C,2010,114(41):17434-17439.
    [16]Xie SY,Wang W,Fernando AS,et al.Solubilization of boron nitride nanotubes[J].Chemical Communications,2005(29):3670-3672.
    [17]Zhang YH,Zhou KG,Gou XC,et al.Effects of dopant and defect on the adsorption of carbon monoxide on graphitic boron nitride sheet:a firstprinciples study[J].Chemical Physics Letters,2010,484(4-6):266-270.
    [18]Chen K,Deng J,Zhao F,et al.Fabrication and properties of Ag-nanoparticles embedded amorphous carbon nanowire/CNT heterostructures[J].Nanoscale Research Letters,2010,5(9):1449-1455.
    [19]Gao G,Mathkar A,Martins EP,et al.Designing nanoscaled hybrids from atomic layered boron nitride with silver nanoparticle deposition[J].Journal of Materials Chemistry A,2014,2(9):3148-3154.
    [20]Lin Y,Bunker CE,Fernando KA,et al.Aqueously dispersed silver nanoparticle-decorated boron nitride nanosheets for reusable,thermal oxidationresistant surface enhanced raman spectroscopy devices[J].ACS Applied Materials&Interfaces,2012,4(2):1110-1117.
    [21]Rangari VK,Mohammad GM,Jeelani S,et al.Synthesis of Ag/CNT hybrid nanoparticles and fabrication of their nylon-6 polymer nanocomposite fibers for antimicrobial applications[J].Nanotechnology,2010,21(9):095102.
    [22]Wang L,Shen L,Xu X,et al.Facile synthesis of uniform h-BN nanocrystals and their application as a catalyst support towards the selective oxidation of benzyl alcohol[J].RSC Advances,2012,2(28):10689-10693.
    [23]Wu M,Zhang Q,Xiao J,et al.Two flexible counter electrodes based on molybdenum and tungsten nitrides for dye-sensitized solar cells[J].Journal of Materials Chemistry,2011,21(29):10761-10766.
    [24]Fang Z,Li S,Gong Y,et al.Comparison of catalytic activity of carbon-based AgBr nanocomposites for conversion of CO2 under visible light[J].Journal of Saudi Chemical Society,2014,18(4):299-307.
    [25]Zhang X,Qu Z,Li X,et al.Studies of silver species for low-temperature co oxidation on Ag/SiO2catalysts[J].Separation&Purification Technology,2010,72(3):395-400.
    [26]Yuan C,Duan B,Li L,et al.Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets[J].ACS Applied Materials&Interfaces,2015,7:13000-13006.
    [27]Kim K,Kim J.Magnetic aligned AlN/epoxy composite for thermal conductivity enhancement at low filler content[J].Composites Part B,2016,93:67-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700