温带两种林型对氮沉降的再分配及其生长季动态与影响因子
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Redistribution of nitrogen deposition and its influencing factors during the growing season in two temperate forests Northeast China
  • 作者:章迅 ; 孙忠林 ; 张全智 ; 王传宽 ; 张著
  • 英文作者:ZHANG Xun;SUN Zhonglin;ZHANG Quanzhi;WANG Chuankuan;ZHANG Zhu;Center for Ecological Research,Northeast Forestry University;
  • 关键词:氮沉降 ; 穿透雨 ; 树干径流 ; 可溶性氮 ; 颗粒态氮
  • 英文关键词:nitrogen deposition;;throughfall;;stemflow;;dissolved nitrogen;;particulate nitrogen
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:东北林业大学生态研究中心;
  • 出版日期:2017-02-17 16:38
  • 出版单位:生态学报
  • 年:2017
  • 期:v.37
  • 基金:中国科学院野外站联盟项目(KFJ-SW-YW026);; 教育部长江学者和创新团队发展计划(IRT1054)
  • 语种:中文;
  • 页:STXB201710013
  • 页数:11
  • CN:10
  • ISSN:11-2031/Q
  • 分类号:130-140
摘要
氮(N)沉降对森林生态系统的结构与功能具有重要的影响,而森林对到达林地的N沉降量及其分配格局的影响尚不清楚。量化了2012—2013年5—10月两个生长季蒙古栎林和杂木林的林内树干径流和穿透雨及其林外大气降雨总氮(TN)、可溶性氮(DN)和颗粒态氮(PN)沉降通量的季节动态,旨在比较两种林型对N沉降的再分配格局及其季节变化,分析影响其变异的主要因子。结果表明:林外大气降雨、蒙古栎林林内、杂木林林内(树干径流+穿透雨)TN沉降平均值分别为:8.49、15.97、13.39 kg hm~(-2)a~(-1),其中DN分别占其TN的76.35%、82.79%和75.02%,PN分别占其TN的26.35%、17.21%和24.98%,蒙古栎林和杂木林林内穿透雨TN沉降量分别占其TN的95.5%和94.5%。蒙古栎林和杂木林冠层淋溶TN沉降量分别为7.48kg hm~(-2)a~(-1)和4.90 kg hm~(2)a~(-1);其中,前者的DN高于后者,但PN呈相反趋势。两种林型的N沉降组分具有明显的季节动态:沉降量均集中在生长季中期(6—8月),生长季前期和末期较低。林外降雨量分别与林外大气降雨、蒙古栎林和杂木林林内的树干径流和穿透雨中的TN、DN浓度呈显著负指数函数关系(P<0.001)。连续降雨天数对蒙古栎林、杂木林林内TN、DN浓度的影响表现为连续降雨2 d以内为富集作用,之后为稀释作用。研究表明林冠对大气氮沉降有显著富集作用,其富集强度及时间动态与森林类型和降雨特征有关,建议氮沉降试验应考虑林冠的富集效应。
        Nitrogen( N) deposition plays an important role in forest structure and function,but the redistribution pattern of N deposition and its components through the forest canopy is not well understood. In the study, we measured the concentrations of total N( TN),dissolved N( DN),and particulate N( PN) in rainfall outside of the stands,and from stemflow and throughfall during the growing seasons( May to October) of two consecutive years( 2012—2013) in two temperate stands( i. e.,Mongolia oak( Quercus mongolica) stand and mixed stand) in the Maroershan region,Northeast China. The objectives were to compare the redistribution patterns of the TN,DN,and PN depositions and their seasonal dynamics in the two stands,and explore potential driving factors of the variability in N deposition. The results showed that the mean TN depositions from outside of the stands,and inside of the oak stand and mixed stand were 8.49 kg hm~(-2)a~(-1),15.97 kg hm~(-2)a~(-1),and 13.39 kg hm~(-2)a~(-1),respectively; among which DN and PN accounted for 76.35%,82.79%,and75.02%,and 26. 35%,17. 21%,and 24. 98% of the TN deposition,respectively. The TN deposition of throughfallaccounted of 95. 5% and 94. 5% of TN inside the oak stand and mixed stand,respectively. The oak and mixed stand canopies leached TN deposition of 7.48 kg N·hm-2a-1and 4.90 kg N hm~(-2)a~(-1),respectively; and the former accumulated more DN but less PN than the latter. There was a significant seasonal pattern of N deposition for the two stands,in which the deposition fluxes were concentrated in the mid-growing seasons( June—August),and declined in the early-and lategrowing seasons. The concentrations of TN and DN outside the stands,and in the throughfall and stemflow of the oak and mixed stands were all significantly related to the rainfall in a negative exponential function( P < 0. 001). The days of continuous rain events influence the concentrations of TN and DN inside the two stands as enrichment within two days of continuous rainfall and dilution in the latter stages. This study indicated that the forest canopy significantly enriched the atmospheric N deposition,and the enrichment strength and its temporal dynamics varied with the characteristics of stands and rainfall. It was suggested that the enrichment effect of forest canopy should be taken into account in the simulation experiments of N deposition in the future.
引文
[1]Field C D,Dise N B,Payne R J,Britton A J,Emmett B A,Helliwell R C,Hughes S,Jones L,Lees S,Leake J R,Leith I D,Phoenix G K,Power S A,Sheppard L J,Southon G E,Stevens C J,Caporn S J M.The role of nitrogen deposition in widespread plant community change across semi-natural habitats.Ecosystems,2014,17(5):864-877.
    [2]Liu X J,Zhang Y,Han W X,Tang A H,Shen J L,Cui Z L,Vitousek P,Erisman J W,Goulding K,Christie P,Fangmeier A,Zhang F S.Enhanced nitrogen deposition over China.Nature,2013,494(7438):459-462.
    [3]Reay D S,Dentener F,Smith P,Grace J,Feely R A.Global nitrogen deposition and carbon sinks.Nature Geoscience,2008,1(7):430-437.
    [4]Galloway J N,Dentener F J,Capone D G,Boyer E W,Howarth R W,Seitzinger S P,Asner G P,Cleveland C C,Green P A,Holland E A,Karl D M,Michaels A F,Porter J H,Townsend A R,V9osmarty C J.Nitrogen cycles:past,present,and future.Biogeochemistry,2004,70(2):153-226.
    [5]Jia Y L,Yu G R,Gao Y N,He N P,Wang Q F,Jiao C C,Zuo Y.Global inorganic nitrogen dry deposition inferred from ground-and space-based measurements.Scientific Reports,2016,6(27):19810.
    [6]Huang P,Zhang J B,Ma D H,Wen Z F,Wu S J,Garland G,Pereira E I P,Zhu A N,Xin X L,Zhang C Z.Atmospheric deposition as an important nitrogen load to a typical agro-ecosystem in the Huang-Huai-Hai Plain.2.Seasonal and inter-annual variations and their implications(2008-2012).Atmospheric Environment,2016,129(3):1-8.
    [7]江泽平.欧洲森林生态系统的氮循环研究近况.世界林业研究,1997,8(5):55-61.
    [8]Clow D W,Roop H A,Nanus L,Fenn M E,Sexstone G A.Spatial patterns of atmospheric deposition of nitrogen and sulfur using ion-exchange resin collectors in Rocky Mountain National Park,USA.Atmospheric Environment,2015,101(1):149-157.
    [9]Yu J H,Zhang M G,Li J L.Simulated seasonal variations in nitrogen wet deposition over East Asia.Atmospheric and Oceanic Science Letters,2016,9(2):99-106.
    [10]Sheng W P,Yu G R,Jiang C M,Yan J H,Liu Y F,Wang S L,Wang B,Zhang J H,Wang C K,Zhou M,Jia B R.Monitoring nitrogen deposition in typical forest ecosystems along a large transect in China.Environmental Monitoring and Assessment,2013,185(1):833-844.
    [11]张娜,乔玉娜,刘兴诏,褚国伟,张德强,闫俊华.鼎湖山季风常绿阔叶林大气降雨、穿透雨和树干流的养分特征.热带亚热带植物学报,2010,18(5):502-510.
    [12]周旺明,郭焱,朱保坤,王晓雨,周莉,于大炮,代力民.长白山森林生态系统大气氮素湿沉降通量和组成的季节变化特征.生态学报,2015,35(1):158-164.
    [13]Galloway J N,Townsend A R,Erisman J W,Bekunda M,Cai Z C,Freney J R,Martinelli L A,Seitzinger S P,Sutton M A.Transformation of the nitrogen cycle:recent trends,questions,and potential solutions.Science,2008,320(5878):889-892.
    [14]BassiriRad H.Consequences of atmospheric nitrogen deposition in terrestrial ecosystems:old questions,new perspectives.Oecologia,2015,177(1):1-3.
    [15]Siegert C M,Levia D F,Hudson S A,Dowtin A L,Zhang F,Mitchell M J.Small-scale topographic variability influences tree species distribution and canopy throughfall partitioning in a temperate deciduous forest.Forest Ecology and Management,2016,359(1):109-117.
    [16]Pryor S C,Barthelmie R J.Liquid and chemical fluxes in precipitation,throughfall and stemflow:observations from a deciduous forest and a red pine plantation in the midwestern U.S.A.Water,Air,and Soil Pollution,2005,163(1):203-227.
    [17]孙素琪,王玉杰,王云琦,张会兰,于雷,刘婕.缙云山3种典型森林降雨过程及其氮素输入.环境科学,2014,35(3):1081-1090.
    [18]关俊祺.大兴安岭北部兴安落叶松林降雨水化学特征研究[D].哈尔滨:东北林业大学,2013.
    [19]及莹,蔡体久.小兴安岭原始红松林降雨截留观测及分段模拟.北京林业大学学报,2015,37(10):41-49.
    [20]姜海燕,赵雨森,信小娟,马文海,李晓平,孙程坤,郭小伟.大兴安岭几种典型林分林冠层降水分配研究.水土保持学报,2008,22(6):197-201.
    [21]刘茜,满秀玲,田野宏.白桦次生林降雨水化学及养分输入特征.北京林业大学学报,2015,37(8):83-89.
    [22]Bytnerowicz A,Fenn M E.Nitrogen deposition in California forests:a review.Environmental Pollution,1996,92(2):127-146.
    [23]Houle D,Marty C,Duchesne L.Response of canopy nitrogen uptake to a rapid decrease in bulk nitrate deposition in two eastern Canadian boreal forests.Oecologia,2015,177(1):29-37.
    [24]Kanakidou M,Myriokefalitakis S,Daskalakis N,Fanourgakis G,Nenes A,Baker A R,Tsigaridis K,Mihalopoulos N.Past,present,and future atmospheric nitrogen deposition.Journal of the Atmospheric Sciences,2016,73(5):2039-2047.
    [25]Fernández-Sanjurjo M,Vega V F,García-Rodeja E.Atmospheric deposition and ionic concentration in soils under pine and deciduous forests in the river Sor catchment(Galicia,NW Spain).Science of the Total Environment,1997,204(2):125-134.
    [26]Rodríguez-O’connor L A.Nitrogen Deposition at Mediterranean Holm-Oak Forests:Loads and Indicators[D].Barcelona:Universitat Autònoma de Barcelona,2015.
    [27]Izquieta-Rojano S,García-Gomez H,Aguillaume L,Santamaría J M,Tang Y S,Santamaría C,Vali1o F,Lasheras E,Alonso R,vila A,Cape J N,Elustondo D.Throughfall and bulk deposition of dissolved organic nitrogen to holm oak forests in the Iberian Peninsula:flux estimation and identification of potential sources.Environmental Pollution,2016,210(3):104-112.
    [28]Wang C K,Han Y,Chen J Q,Wang X C,Zhang Q Z,Bond-Lamberty B.Seasonality of soil CO2efflux in a temperate forest:biophysical effects of snowpack and spring freeze–thaw cycles.Agricultural and Forest Meteorology,2013,177(8):83-92.
    [29]Wang C K.Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests.Forest Ecology and Management,2006,222(1):9-16.
    [30]孙忠林.东北东部落叶阔叶林生态系统可溶性碳氮与颗粒碳氮通量[D].哈尔滨:东北林业大学,2014.
    [31]孙忠林,王传宽,王兴昌,张全智.两种温带落叶阔叶林降雨再分配格局及其影响因子.生态学报,2014,34(14):3978-3986.
    [32]Pan Y P,Wang Y S,Xin J Y,Tang G Q,Song T,Wang Y H,Li X R,Wu F K.Study on dissolved organic carbon in precipitation in Northern China.Atmospheric Environment,2010,44(19):2350-2357.
    [33]Le Mellec A,Meesenburg H,Michalzik B.The importance of canopy-derived dissolved and particulate organic matter(DOM and POM)–comparing throughfall solution from broadleaved and coniferous forests.Annals of Forest Science,2010,67(4):411-411.
    [34]梁婷,同延安,林文,乔丽,刘学军,白水成,杨宪龙.陕西省不同生态区大气氮素干湿沉降的时空变异.生态学报,2014,34(3):738-745.
    [35]王小治,尹微琴,单玉华,封克,朱建国.太湖地区湿沉降中氮磷输入量——以常熟生态站为例.应用生态学报,2009,20(10):2487-2492.
    [36]盛文萍,于贵瑞,方华军,刘允芬,胡中民.离子树脂法测定森林穿透雨氮素湿沉降通量——以千烟洲人工针叶林为例.生态学报,2010,30(24):6872-6880.
    [37]Morse J L,Durán J,Beall F,Enanga E M,Creed I F,Fernandez I,Groffman P M.Soil denitrification fluxes from three northeastern North American forests across a range of nitrogen deposition.Oecologia,2015,177(1):17-27.
    [38]Evans C D,Goodale C L,Caporn S J M,Dise N B,Emmett B A,Fernandez I J,Field C D,Findlay S E G,Lovett G M,Meesenburg H,Moldan F,Sheppard L J.Does elevated nitrogen deposition or ecosystem recovery from acidification drive increased dissolved organic carbon loss from upland soil?A review of evidence from field nitrogen addition experiments.Biogeochemistry,2008,91(1):13-35.
    [39]Phoenix G K,Emmett B A,Britton A J,Caporn S J M,Dise N B,Helliwell R,Jones L,Leake J R,Leith I D,Sheppard L J,Sowerby A,Pilkington M G,Rowe E C,Ashmore M R,Power S A.Impacts of atmospheric nitrogen deposition:responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments.Global Change Biology,2012,18(4):1197-1215.
    [40]樊后保,苏兵强,林德喜,陈世品.杉木人工林生态系统的生物地球化学循环Ⅱ:氮素沉降动态.应用与环境生物学报,2000,6(2):133-137.
    [41]Tu L H,Hu T X,Zhang J,Huang L H,Xiao Y L,Chen G,Hu H L,Liu L,Zheng J K,Xu Z F,Chen L H.Nitrogen distribution and cycling through water flows in a subtropical bamboo forest under high level of atmospheric deposition.PLo S One,2013,8(10):e75862.
    [42]骆晓声,石伟琦,鲁丽,刘学军,莫亿伟,邓峰.我国雷州半岛典型农田大气氮沉降.生态学报,2014,34(19):5541-5548.
    [43]李力,刘立强,周光益,邱治军,赵厚本.南岭常绿阔叶林林冠受损对穿透雨和树干流水化学的影响.水土保持学报,2014,28(2):45-50,68-68.
    [44]陈能汪,洪华生,张珞平.九龙江流域大气氮湿沉降研究.环境科学,2008,29(1):38-46.
    [45]倪婉敏,朱蕊,张建英.大气氮湿沉降对青山湖富营养化的影响.环境化学,2012,31(5):631-635.
    [46]Fenn M E,Poth M A,Arbaugh M J.A throughfall collection method using mixed bed ion exchange resin columns.The Scientific World Journal,2002,2(1):122-130.
    [47]郑利霞,刘学军,张福锁.大气有机氮沉降研究进展.生态学报,2007,27(9):3828-3834.
    [48]刘冬碧,张小勇,巴瑞先,刘毅,范先鹏,张富林,熊桂云.鄂西北丹江口库区大气氮沉降.生态学报,2015,35(10):3419-3427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700