近20年重庆市农牧生产体系氮素流动特征及驱动力分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nitrogen Flow of Crop-Livestock Production System and Its Driving Forces in Chongqing over the Past 20 Years
  • 作者:陈轩敬 ; 宫雅慧 ; 谢军 ; 张跃强 ; 陈新平 ; 石孝均
  • 英文作者:CHEN XuanJing;GONG YaHui;XIE Jun;ZHANG YueQiang;CHEN XinPing;SHI XiaoJun;Key Lab of Cropland Preservation in Southwest, Ministry of Agriculture, College of Resources and Environment, Southwest University;College of Economics and Management, Southwest University;Academy of Advanced Agricultural Sciences, Southwest University;
  • 关键词: ; 重庆市 ; 农牧系统 ; 驱动力 ; NUFER模型
  • 英文关键词:nitrogen(N);;Chongqing;;crop-livestock system;;driving force;;NUFER model
  • 中文刊名:ZNYK
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:西南大学资源环境学院农业部西南耕地保育重点实验室;西南大学经济管理学院;西南大学农业科学研究院;
  • 出版日期:2018-02-08 19:05
  • 出版单位:中国农业科学
  • 年:2018
  • 期:v.51
  • 基金:国家重点研发计划(2016YFD0200104,2017YFD0200108)
  • 语种:中文;
  • 页:ZNYK201803007
  • 页数:13
  • CN:03
  • ISSN:11-1328/S
  • 分类号:73-85
摘要
【目的】通过评价重庆地区农牧系统的氮素流动特征,明确氮素的主要损失途径及驱动因素,提出未来农牧生产中氮素管理措施,为实现重庆地区农牧系统氮养分的高效利用提供数据支撑。【方法】通过查阅文献及统计数据并结合调查研究,采用NUFER(nutrient flow in food chain,environment and resources use)评价方法,以重庆市农牧生产系统为主要研究对象,定量1996—2015年间农牧系统的氮素流动特征,明确其环境代价。在此基础上,探讨人类活动与农牧系统氮素流动特征变化之间的关系,并通过对2020年不同氮素管理情景分析,探索区域氮素的可持续利用途径。【结果】1996—2015年,重庆市农牧系统氮素输入总量增长19.2%,2015年达到1 006 Gg,其中化肥贡献57%以上;氮素输出总量增长16.5%,2015年达到844 Gg,环境损失为最大的氮素输出项,占输出量的61.7%左右,其中农田生产和畜禽养殖系统分别贡献45.1%和54.9%;农牧系统内氮素循环总量增长42.7%,2015年达到448 Gg,其中秸秆还田和畜禽粪尿还田氮量分别达到32.7和95.0 Gg,20年间分别增长55%和44%。1996—2015年重庆市蔬菜瓜果等经济作物种植比例从10%升至28%,粮食作物种植比例从82%降至62%,肉蛋奶等动物主产品输出量增加83%。农牧生产结构的变化与氮素利用和损失的变化呈现显著的线性正相关关系,但人均GDP(gross domestic product)的增长与氮素利用和损失的变化没有呈现明显的线性关系,表明影响系统氮素流动特征的主导因素应该是农牧生产结构变化,而经济发展水平的变化只是起到了刺激农牧产品消费的作用。通过情景分析,若在2020年实现《重庆市农业农村发展"十三五"规划》的农产品生产目标,保持目前的氮肥投入和氮素管理现状,将会增加18 Gg氮素损失,同时降低氮素利用率1.2%;通过提高系统内部氮素循环利用率,优化作物生产养分管理,可在实现生产目标的同时,分别减少氮肥投入和氮素损失量15%和4.2%,提高农牧系统氮素利用率1.3%以上。【结论】在近20年中,重庆市农牧生产系统氮素流动特征发生了很大变化,氮素输入强度和环境损失在不断增加,而农牧生产结构改变是其变化的主要驱动力。在重庆未来农牧生产中,减少畜禽生产系统氮素的直接排放,加大畜禽粪尿和秸秆循环利用力度,优化作物生产系统氮素管理措施和提高氮素利用效率,是实现农牧生产和生态环境的平衡发展的有效措施。
        【Objective】 The objectives of this study are to evaluate the characteristics of nitrogen(N) flow in the crop-livestock system and analyze the main pathways of N loss and main drivers of the change in N flow in the crop-livestock system, put forward the effective N management measures, and to provide a powerful technical support for efficient N resource adoption in crop-livestock system in Chongqing.【Method】The crop-livestock system of Chongqing was defined as research case. A quantitative analysis of the N flow and loss and of their relationships with human activities from 1996 to 2015 was reported using the nutrient flow in food chain, environment and resources use model(NUFER). The data were mainly derived from literature, statistics and research reports. Pathways to a sustainable N use were explored through scenario analysis of different N managements in 2020.【Result】The total N input of crop-livestock system in Chongqing increased by 19.2% from 1996 to 2015. The amount of N input reached 1 006 Gg in 2015 and fertilizer consumption contributed 57% to it. The total N output of crop-livestock system in Chongqing increased by 16.5% from 1996 to 2015 and it has reached 844 Gg in 2015. Environmental loss was the largest part of N output in the crop-livestock system, which accounted for 61.7% of total output. Crop and animal production systems contributed 45.1% and 54.9% to the total N loss in 2015, respectively. The total amount of N cycle in the crop-livestock system increased by 42.7% and reached 448 Gg in 2015. The N amounts in manure and straw returning reached 32.7 and 95.0 Gg, respectively, which increased by 55% and 44% from 1996 to 2015. The cultivation proportion of vegetable and fruit to total sown areas increased from 10% to 28% from 1996 to 2015. Meanwhile, the percentage of cereals crops area dropped from 82% to 62%. In addiction,the export of main animal products increased by 83%, such as meat, milk and eggs. A significant liner relationship was observed between changes in N use and loss and changes in production structure, while the relationship between changes in N use and loss and changes in gross domestic production(GDP) was non-linear. It suggested that the dominant factor affecting N flow should be production structure, and GDP just played a role in stimulating consumption of crop and animal products. If the goal of agricultural production in the "13 th Five-Year Plan for Agricultural Development in Chongqing Municipality" is fulfilled by 2020 with current N fertilizer inputs and N management practices, it will increase N loss by 18 Gg and reduce N use efficiency by 1.2% relative to the status of 2015. Scenario with increased the N cycling rate in the crop-livestock system and optimized nutrients management of crop production, indicated 15% and 4.2% reductions in N fertilizer input and N loss, respectively. It also would greatly increase N use efficiencies(NUE).【Conclusion】The characteristics of N flow in the crop-livestock system have been greatly changed over the past 20 years in Chongqing. Increased N input and total environmental loss were observed since 1996. The main driver for these changes was adjustment of production structure. Key measures for ensuring food production and minimizing environmental costs are(1) reducing direct emission of N from the livestock system to the environment,(2) enhancing the recycling of straw and manure,(3) optimizing N management and improving NUE in crop production system.
引文
[1]HOU Y,MA L,SáRDI K,SISáK I,MA W Q.Nitrogen flows in the food production chain of Hungary over the period 1961-2010.Nutrient Cycling in Agroecosystems,2015,102(3):335-346.
    [2]GU B J,JU X T,CHANG J,GE Y,VITOUSEK P M.Integrated reactive nitrogen budgets and future trends in China.Proceedings of the National Academy of Sciences of the United States of America,2015,112(28):8792-8797.
    [3]GUO J H,LIU X J,ZHANG Y,SHEN J L,HAN W X,ZHANG W F,CHRISTIE P,GOULDING K W T,VITOUSEK P M,ZHANG F S.Significant acidification in major Chinese croplands.Science,2010,327(5968):1008-1010.
    [4]ZHOU J Y,GU B J,SCHLESINGER W H,JU X T.Significant accumulation of nitrate in Chinese semi-humid croplands.Scientific Reports,2016,6:Article number 25088.
    [5]GIORDANO J C P,BRUSH M J,ANDERSON I C.Quantifying annual nitrogen loads to Virginia’s Coastal Lagoons:Sources and water quality response.Estuaries and Coasts,2011,34(2):297-309.
    [6]信桂新,魏朝富,杨朝现,邓华.1978-2011年重庆市种植业变化及其政策启示.资源科学,2015,37(9):1834-1847.XIN G X,WEI C F,YANG C X,DENG H.Changes of crop farming and policy implications in Chongqing Municipality from 1978 to 2011.Resource Science,2015,37(9):1834-1847.(in Chinese)
    [7]周媛媛,殷捷,杨志敏,黄磊,陈玉成.重庆市畜禽粪污的区域分布及其水环境响应特征分析.中国生态农业学报,2016,24(6):811-818.ZHOU Y Y,YIN J,YANG Z M,HUANG L,CHEN Y C.Regional distribution of livestock manure and response characteristics of water environment in Chongqing.Chinese Journal of Eco-Agriculture,2016,24(6):811-818.(in Chinese)
    [8]GAO M,QIU J,LI C,WANG L,LI H,GAO C.Modeling nitrogen loading from a watershed consisting of cropland and livestock farms in China using Manure-DNDC.Agriculture,Ecosystems&Environment,2014,185:88-98.
    [9]HOANG V N,ALAUDDIN M.Assessing the eco-environmental performance of agricultural production in OECD countries:The use of nitrogen flows and balance.Nutrient Cycling in Agroecosystems,2010,87(3):353-368.
    [10]CHEN F,HOU L J,LIU M,ZHENG Y L,YIN G Y,LIN X B,LI X F,ZONG H B,DENG F Y,GAO J,JIANG X F.Net anthropogenic nitrogen inputs(NANI)into the Yangtze River basin and the relationship with riverine nitrogen export.Journal of Geophysical Research-Biogeosciences,2016,121(2):451-465.
    [11]EMILI L A,GREENE R P.Modeling agricultural nonpoint source pollution using a geographic information system approach.Environmental Management,2013,51(1):70-95.
    [12]MA L,MA W Q,VELTHOF G L,WANG F H,QIN W,ZHANG F S,OENEMA O.Modeling nutrient flows in the food chain of China.Journal of Environmental Quality,2010,39(4):1279-1289.
    [13]MA L,VELTHOF G L,WANG F H,QIN W,ZHANG W F,LIU Z,ZHANG Y,WEI J,LESSCHEN J P,MA W Q,OENEMA O,ZHANG F S.Nitrogen and phosphorus use efficiencies and losses in the food chain in China at regional scales in 1980 and 2005.Science of the Total Environment,2012,434:51-61.
    [14]OENEMA O,KROS H,DE VRIES W.Approaches and uncertainties in nutrient budgets:Implications for nutrient management and environmental policies.European Journal of Agronomy,2003,20(1/2):3-16.
    [15]VELTHOF G L,OUDENDAG D,WITZKE H R,ASMAN W A H,KLIMON Z T,OENEMA O.Integrated assessment of nitrogen losses from agriculture in EU-27 using MITERRA-EUROPE.Journal of Environmental Quality,2009,38(2):402-417.
    [16]刘志欣.近十年来重庆三峡库区农业面源污染变化研究[D].重庆:重庆师范大学,2016.LIU Z X.Changes of agricultural non-point source pollution in Chongqing Three Gorges Reservoir Area in recent ten years[D].Chongqing:Chongqing Normal University,2016.(in Chinese)
    [17]杨蓉.重庆市农业面源污染分析[D].重庆:西南大学,2009.YANG R.Analysis of the present condition of agriculture non-point source pollution in Chongqing[D].Chongqing:Southwest University,2009.(in Chinese)
    [18]胡雪飙.重庆市畜禽养殖区域环境承载力研究及污染防治对策[D].重庆:重庆大学,2006.HU X B.Research of AECC about livestock and poultry in Chongqing and pollution prevention countermeasures[D].Chongqing:Chongqing University,2006.(in Chinese)
    [19]重庆市统计局.重庆统计年鉴.北京:中国统计出版社,2016.Chongqing Statistics Bureau.Chongqing Statistical Yearbook.Beijing:China Statistics Press,2016.(in Chinese)
    [20]EUROSTAT Glossary:Livestock Unit[EB/OL].(2014-06-07)[2017-06-16].http://ec.europa.eu/eurostat/statistics explained/index.php/Glossary:Livestock unit_(LSU).
    [21]MA L,GUO J H,VELTHOF G L,LI Y M,CHEN Q,MA W Q,OENEMA O,ZHANG F S.Impacts of urban expansion on nitrogen and phosphorus flows in the food system of Beijing from 1978 to2008.Global Environmental Change,2014,28:192-204.
    [22]LIU X J,ZHANG Y,HAN W X,TANG A H,SHEN J L,CUI Z L,VITOUSEK P,ERISMAN J W,GOULDING K,CHRISTIE P,FANGMEIER A,ZHANG F S.Enhanced nitrogen deposition over China.Nature,2013,494(7438):459-462.
    [23]YAN W J,ZHANG S,SUN P,SEITZINGER S P.How do nitrogen inputs to the Changjiang basin impact the Changjiang River nitrate:A temporal analysis for 1968-1997.Global Biogeochemical Cycles,2003,17(4):DOI:10.1029/2002GB002029.
    [24]杨俊,韩圣慧,李富春,张旭,赵秀兰,刘春岩,范貌宏.川渝地区农业生态系统氧化亚氮排放.环境科学,2009,30(9):2684-2693.YANG J,HAN S H,LI F C,ZHANG X,ZHAO X L,LIU C Y,FAN M H.N2O emissions from agricultural ecosystem in SichuanChongqing region.Environmental Science,2009,30(9):2684-2693.(in Chinese)
    [25]李富春,韩圣慧,杨俊,张旭,李如燕,魏源送,范貌宏.川渝地区农业生态系统NH3排放.环境科学,2009,30(10):2823-2831.LI F C,HAN S H,YANG J,ZHANG X,LI R Y,WEI Y S,FAN M H.Agro-ecosystem ammonia emission in Sichuan-Chongqing region.Environmental Science,2009,30(10):2823-2831.(in Chinese)
    [26]李富春.川渝地区农业生态系统NH3排放[D].昆明:昆明理工大学,2009.LI F C.Agro-ecosystem ammonia emission in Sichuan-Chongqing region[D].Kunming:Kunming University of Science and Technology,2009.(in Chinese)
    [27]黎红梅,李娟娟.南方农户种植行为变化的影响因素分析——基于湖南省典型灌区的调查.农业现代化研究,2015,36(4):617-623.LI H M,LI J J.Analysis of the influencing factors of the planting behavior changes of southern farmers:A case study of the irrigation regions in Hunan Province.Research of Agricultural Modernization,2015,36(4):617-623.(in Chinese)
    [28]肖新成,谢德体,何丙辉,魏朝富,倪久派.基于农业面源污染控制的三峡库区种植业结构优化.农业工程学报,2014,30(20):219-227.XIAO X C,XIE D T,HE B H,WEI C F,NI J P.Planting structure optimization based on agricultural non-point source pollution control in Three Gorges Reservoir Region.Transactions of the Chinese Society of Agricultural Engineering,2014,30(20):219-227.(in Chinese)
    [29]刘珍环,杨鹏,吴文斌,李正国,游良志.近30年中国农作物种植结构时空变化分析.地理学报,2016,71(5):840-851.LIU Z H,YANG P,WU W B,LI Z G,YOU L Z.Spatio-temporal changes in Chinese crop patterns over the past three decades.Acta Geographica Sinica,2016,71(5):840-851.(in Chinese)
    [30]武良,张卫峰,陈新平,崔振岭,范明生,陈清,张福锁.中国农田氮肥投入和生产效率.中国土壤与肥料,2016(4):76-83.WU L,ZHANG W F,CHEN X P,CUI Z L,FAN M S,CHEN Q,ZHANG F S.Nitrogen fertilizer input and nitrogen use efficiency in Chinese farmland.Soil and Fertilizer Sciences in China,2016(4):76-83.(in Chinese)
    [31]BAI Z H,MA L,QIN W,CHEN Q,OENEMA O,ZHANG F S.Changes in pig production in China and their effects on nitrogen and phosphorus use and losses.Environmental Science&Technology,2014,48(21):12742-12749.
    [32]张远蓉,王帅.水稻-榨菜轮作体系中施肥研究.西南师范大学学报(自然科学版),2008,33(2):69-73.ZHANG Y R,WANG S.Study on fertilization status of rice-tumorous stem mustard rotation system.Journal of Southwest China Normal University(Natural Science Edition),2008,33(2):69-73.(in Chinese)
    [33]贺彩平,刘峰,石孝均,尹洪,赵俊杰.重庆市巫山县烟草施肥现状调查分析.中国农学通报,2013,29(7):179-184.HE C P,LIU F,SHI X J,YIN H,ZHAO J J.Investigation and analysis of fertilizer application on tobacco in Wushan County of Chongqing.Chinese Agricultural Science Bulletin,2013,29(7):179-184.(in Chinese)
    [34]代文才,周鑫斌,黄兴成.重庆市奉节县柑橘施肥现状调查与评价.贵州农业科学,2014,42(8):175-178.DAI W C,ZHOU X B,HUANG X C.Current status investigation and evaluation on citrus fertilization in Fengjie county of Chongqing.Guizhou Agricultural Sciences,2014,42(8):175-178.(in Chinese)
    [35]魏泉源.规模化沼气工程沼液、沼渣减量化及资源化利用研究[D].北京:北京化工大学,2014.WEI Y Q.Reduction and resource utilization of biogas residue and biogas slurry from scale biogas engineering[D].Beijing:Beijing University of Chemical Technology,2014.(in Chinese)
    [36]COMPTON J E,HARRISON J A,DENNIS R L,GREAVER T L,HILL B H,JORDAN S J,WALKER H,CAMPBELL H V.Ecosystem services altered by human changes in the nitrogen cycle:A new perspective for US decision making.Ecology Letters,2011,14(8):804-815.
    [37]ZHANG W F,DOU Z X,HE P,JU X T,POWLSON D,CHADWICK D,NORSE D,LU Y L,ZHANG Y,WU L,CHEN X P,CASSMAN K G,ZHANG F S.New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China.Proceedings of the National Academy of Sciences of the United States of America,2013,110(21):8375-8380.
    [38]STROKAL M,KROEZE C,WANG M R,BAI Z H,MA L.The MARINA model(Model to assess river inputs of nutrients to se As):Model description and results for China.The Science of the Total Environment,2016,562:869-888.
    [39]CHEN X P,CUI Z L,FAN M S,VITOUSEK P,ZHAO M,MA W Q,WANG Z L,ZHANG W J,YAN X Y,YANG J C,DENG X P,GAO Q,ZHANG Q,GUO S W,REN J,LI S Q,YE Y L,WANG Z H,HUANG J L,TANG Q Y,SUN Y X,PENG X L,ZHANG J W,HE M R,ZHU Y J J,XUE J Q,WANG,WU L,AN N,WU L Q,MA L,ZHANG W F,ZHANG F S.Producing more grain with lower environmental costs.Nature,2014,514(7523):486-489.
    [40]陈清,张福锁,李晓林.蔬菜生产的氮素调控技术与应用.中国蔬菜,2005(增刊):57-63.CHEN Q,ZHANG F S,LI X L.Application of N management strategies in vegetable production.China Vegetables,2005(Suppl.):57-63.(in Chinese)
    [41]王丽英,任珊露,严正娟,陈清.根层调控:果类蔬菜高效利用养分的关键.华北农学报,2012,27(增刊):292-297.WANG L Y,REN S L,YAN Z J,CHEN Q.Rhizosphere management:The key to get high nutrient use efficiency for fruit vegetable.Acta Agriculturae Boreali-Sinica,2012,27(Suppl.):292-297.(in Chinese)
    [42]STEINSHAMN H,THUEN E,BLEKEN M A,BRENOE U T,EKERHOLT G,YRI C.Utilization of nitrogen(N)and phosphorus(P)in an organic dairy farming system in Norway.Agriculture,Ecosystems&Environment,2004,104(3):509-522.
    [43]侯勇,高志岭,马文奇,HEIMANN L,ROELCKE M,NIEDER R.京郊典型集约化“农田-畜牧”生产系统氮素流动特征.生态学报,2012,32(4):1028-1036.HOU Y,GAO Z L,MA W Q,HEIMANN L,ROELCKE M,NIEDER R.Nitrogen flows in intensive“crop-livestock”production systems typically for the peri-urban area of Beijing.Acta Ecologica Sinica,2012,32(4):1028-1036.(in Chinese)
    [44]谢军,赵亚南,陈轩敬,李丹萍,徐春丽,王珂,张跃强,石孝均.有机肥氮替代化肥氮提高玉米产量和氮素吸收利用效率.中国农业科学,2016,49(20):3934-3943.XIE J,ZHAO Y N,CHEN X J,LI D P,XU C L,WANG K,ZHANG Y Q,SHI X J.Nitrogen of organic manure replacing chemical nitrogenous fertilizer improve maize yield and nitrogen uptake and utilization efficiency.Scientia Agriculture Sinica,2016,49(20):3934-3943.(in Chinese)
    [45]王敬国,林杉,李保国.氮循环与中国农业氮管理.中国农业科学,2016,49(3):503-517.WANG J G,LIN S,LI B G.Nitrogen cycling and management strategies in Chinese agriculture.Scientia Agriculture Sinica,2016,49(3):503-517.(in Chinese)
    [46]黄向东,韩志英,石德智,黄啸,吴伟祥,刘玉学.畜禽粪便堆肥过程中氮素的损失与控制.应用生态学报,2010,21(1):247-254.HUANG X D,HAN Z Y,SHI D Z,HUANG X,WU W X,LIU Y X.Nitrogen loss and its control during livestock manure composting.Chinese Journal of Applied Ecology,2010,21(1):247-254.(in Chinese)
    [47]WANG F H,DOU Z X,MA L,MA WQ,SIMS J T,ZHANG F S.Nitrogen mass flow in China’s animal production system and environmental implications.Journal of Environmental Quality,2010,39(5):1537-1544.
    [48]OENEMA O,WITZKE H P,KLIMONT Z,LESSCHEN J P,VELTHOF G L.Integrated assessment of promising measures to decrease nitrogen losses from agriculture in EU-27.Agriculture,Ecosystems&Environment,2009,133(3/4):280-288.
    [49]LIANG L,NAGUMO T,HATANO R.Nitrogen flow in the rural ecosystem of Mikasa City in Hokkaido,Japan.Pedosphere,2006,16(2):264-272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700