不同灌溉方式和尿素猪粪比例对稻田氮素转化相关微生物活性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of different irrigation methods and ratios of urea pig manure on microbial activity related to nitrogen transformation in paddy soil
  • 作者:陈意超 ; 李伏生 ; 李烙布
  • 英文作者:CHEN Yichao;LI Fusheng;LI Luobu;College of Agriculture, Guangxi University/Guangxi Academician Work Station of the New Technology of Watersaving Agriculture in Karst Region,Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage;
  • 关键词:节水灌溉 ; 有机无机氮比例 ; 水稻土 ; 氮素转化 ; 酶活性
  • 英文关键词:water-saving irrigation;;ratio of organic to inorganic nitrogen;;paddy soil;;nitrogen transformation;;enzyme activity
  • 中文刊名:HNNB
  • 英文刊名:Journal of South China Agricultural University
  • 机构:广西大学农学院/广西喀斯特地区节水农业新技术院士工作站/广西高校作物栽培学与耕作学重点实验室;
  • 出版日期:2017-12-29 11:42
  • 出版单位:华南农业大学学报
  • 年:2018
  • 期:v.39
  • 基金:国家自然科学基金(51469003)
  • 语种:中文;
  • 页:HNNB201801007
  • 页数:9
  • CN:01
  • ISSN:44-1110/S
  • 分类号:37-45
摘要
【目的】弄清"薄浅湿晒"和干湿交替灌溉方式下稻田氮素转化相关微生物活性的变化规律。【方法】试验设3种灌溉方式(CIR:常规灌溉;TIR:"薄浅湿晒"灌溉;DIR:干湿交替灌溉)和3种施氮处理(FM1:全尿素;FM2:猪粪替代30%尿素;FM3:猪粪替代50%尿素),测定了分蘖期、孕穗期、乳熟期和成熟期土壤亚硝酸细菌、硝酸细菌和反硝化细菌数量以及脲酶、羟胺还原酶、亚硝酸还原酶和硝酸还原酶的活性,并分析了各微生物活性指标之间的相互关系。【结果】孕穗期不同处理土壤亚硝酸细菌、硝酸细菌和反硝化细菌数量较多,脲酶、亚硝酸还原酶和硝酸还原酶活性较高,且DIR方式下土壤羟胺还原酶活性较高。FM3处理下,与CIR方式相比,DIR方式下的土壤亚硝酸细菌数量在分蘖期提高2.31倍,分蘖期至乳熟期的平均土壤硝酸细菌数量及脲酶、羟胺还原酶、亚硝酸还原酶活性分别增加2.07、0.81、554.72和1.78倍,但是4个时期的平均反硝化细菌数量以及硝酸还原酶活性分别下降31.34%和43.82%。TIR方式下的土壤氮素转化相关微生物指标与CIR方式的差异因施肥处理和生育期而异。DIR方式下,与FM1相比,FM3处理显著增加乳熟期土壤亚硝酸细菌数量、孕穗期和成熟期硝酸细菌数量、分蘖期和成熟期反硝化细菌数量、乳熟期和成熟期土壤脲酶活性、分蘖期和乳熟期土壤羟胺还原酶活性以及孕穗期土壤亚硝酸还原酶和硝酸还原酶活性。除硝酸还原酶活性与硝酸细菌数量、亚硝酸还原酶活性之间的相关关系不显著外,其他指标之间呈显著相关。【结论】水稻孕穗期是稻田土壤氮素转化相关微生物的活跃时期,DIR方式能有效提高分蘖期和孕穗期大部分土壤氮素转化相关微生物指标,而TIR方式和FM3处理在乳熟期或成熟期可显著增加土壤氮素转化相关微生物活性。
        【Objective】To understand the changes of microbial indexes related to nitrogen transformation in paddy field under "thin-shallow-wet-dry" and alternate drying and wetting irrigation methods.【Method】We used three irrigation methods(CIR: conventional irrigation, TIR: "thin-shallow-wet-dry" irrigation, DIR: alternatedrying and wetting irrigation), and three nitrogen(N) treatments(FM1: all urea, FM2: 30% urea substituted by pig manure, FM3: 50% urea substituted by pig manure). The numbers of nitrite bacteria, nitrate bacteria, denitrifying bacteria and the activities of urease, hydroxylamine reductase, nitrite reductase and nitrate reductase were measured at tillering, booting, milky and ripening stages. The relationships among the microbial activity indices were analyzed.【Result】At booting stage, the numbers of nitrite bacteria, nitrate bacteria and denitrifying bacteria were relatively large, and the activities of urease, nitrite reductase and nitrate reductase were relatively high in soil under different treatments. Hydroxylamine reductase activity was relatively high by DIR method. Under FM3 treatment, compared to CIR method, DIR method increased the number of nitrite bacteria by 2.31 times at tillering stage, increased the number of nitrate bacteria and the activities of urease, hydroxylamine reductase and nitrite reductase by 2.07, 0.81, 554.72 and 1.78 times from tillering stage to milky stage, but reduced the average number of denitrifying bacteria and nitrate reductase activity by 31.34% and 43.82% respectively at four growth stages. The differences of microbial indexes related to nitrogen transformation in paddy soil between TIR and CIR methods varied with N treatments and growth stages. Using DIR method, compared to FM1, FM3 significantly increased the number of nitrite bacteria at milky stage, the number of nitrate bacteria at booting and ripening stages, the number of denitrifying bacteria at tillering and ripening stages, urease activity at milky and ripening stages, hydroxylamine reductase activity from tillering stage to milky stage, and activities of nitrite reductase and nitrate reductase at booting stage. Except the insignificant correlations among nitrate reductase activity, the number of nitrate bacteria and nitrite reductase activity, there were significant correlations among other microbial indexes.【Conclusion】The rice booting stage is the active stage of microbial activity related to nitrogen transformation in paddy field. DIR method can effectively enhance most microbial indexes related to nitrogen transformation in soil at tillering and booting stages. TIR method and FM3 treatment can significantly increase microbial activities related to nitrogen transformation in soil at milky and ripening stages.
引文
[1]顾明华,区惠平,刘昔辉,等.不同耕作方式下稻田土壤的氮素形态及氮素转化菌特征[J].应用生态学报,2009,20(6):1362-1368.
    [2]郝晓晖,刘守龙,童成立,等.长期施肥对两种稻田土壤微生物量氮及有机氮组分的影响[J].中国农业科学,2007,40(4):757-764.
    [3]BORKEN W,MATZNER E.Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils[J].Global Change Biol,2009,15(4):808-824.
    [4]梁燕菲,张潇潇,李伏生.“薄浅湿晒”灌溉稻田土壤微生物量碳、氮和酶活性研究[J].植物营养与肥料学报,2013,19(6):1403-1410.
    [5]张玉树.农业管理方式对亚热带土壤氮转化过程的影响[D].南京:南京师范大学,2015.
    [6]关荫松,张德生,张志明.土壤酶及其研究方法[M].北京:农业出版社,1986:332-335.
    [7]孙瑞莲,赵秉强,朱鲁生,等.长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用[J].植物营养与肥料学报,2003,9(4):406-410.
    [8]李振高,骆永明,滕应.土壤与环境微生物研究法[M].北京:科学出版社,2008:397-413.
    [9]周礼恺.土壤的酶活性[J].土壤学进展,1980,8(4):9-15.
    [10]刘宇锋,邓少虹,梁燕菲,等.灌溉方式与有机无机氮配施对水稻土壤微生物活性的影响[J].华中农业大学学报,2012,4(31):428-435.
    [11]郑莹莹.干湿交替对土壤氮素转化及生物学特性的影响[D].上海:东华大学,2013.
    [12]黄树辉.裂缝条件下稻田土壤中N2O的释放和氮溶质运移的机理研究[D].杭州:浙江大学,2005.
    [13]王苏平,辉建春,林立金,等.施肥制度对川中丘陵区玉米不同生育期土壤反硝化酶活性的影响[J].水土保持研究,2012,19(3):274-277.
    [14]和文祥,魏燕燕,蔡少华.土壤反硝化酶活性测定方法及影响因素研究[J].西北农林科技大学学报(自然科学版),2006,34(1):121-124.
    [15]谢先红,崔远来.典型灌溉模式下灌溉水利用效率尺度变化模拟[J].武汉大学学报(工学版),2009,42(5):653-656.
    [16]徐芬芬,曾晓春,石庆华.干湿交替灌溉方式下水稻节水增产机理研究[J].杂交水稻,2009,24(3):72-75.
    [17]张自常,李鸿伟,曹转勤,等.施氮量和灌溉方式的交互作用对水稻产量和品质影响[J].作物学报,2013,39(1):84-92.
    [18]章家恩.生态学常用实验研究方法与技术[M].北京:化学工业出版社,2007:163-164.
    [19]史云峰,武志杰,史奕,等.土壤羟胺还原酶活性测定方法的改进[J].生态学杂志,2007,26(7):1133-1137.
    [20]哈兹耶夫(苏).土壤酶活性[M].郑洪元,等,译.北京:科学出版社,1980.
    [21]李秀英,赵秉强,李絮花,等.不同施肥制度对土壤微生物的影响及其与土壤肥力的关系[J].中国农业科学,2005,38(8):1591-1599.
    [22]李东坡,武志杰,陈利军,等.长期培肥黑土脲酶活性动态变化及其影响因素[J].应用生态学报,2003,14(12):2208-2212.
    [23]李东坡,武志杰,梁成华.土壤环境污染与农产品质量[J].水土保持通报,2008,28(4):172-177.
    [24]李香兰,徐华,蔡祖聪.水分管理影响稻田氧化亚氮排放研究进展[J].土壤,2009,41(1):1-7.
    [25]刘龙龙.不同深度细沙人工湿地中微生物种群及数量分布研究[D].西安:西安建筑科技大学,2014.
    [26]叶玉适.水肥耦合管理对稻田生源要素碳氮磷迁移转化的影响[D].杭州:浙江大学,2014.
    [27]ABDELMAGID H M,TABATABAI M A.Nitrate reductase activity of soils[J].Soil Biol Biochem,1987,19(4):421-427.
    [28]FU M H,TABATABAI M A.Nitrate reductase activity in soils:Effects of trace elements[J].Soil Biol Biochem,1989,21(7):943-946.
    [29]陈利军,武志杰,姜勇,等.与氮转化有关的土壤酶活性对抑制剂施用的响应[J].应用生态学报,2002,13(9):1099-1103.
    [30]籍景淑.猪场氨气控制研究[D].武汉:华中农业大学,2012.
    [31]范业成,陶其骧,叶厚专.稻田肥料效应和肥力监测阶段性研究报告[J].江西农业学报,1996,8(2):114-122.
    [32]MARX M C,KANDELER E,WOOD M,et al.Exploring the enzymatic landscape:Distribution and kinetics of hydrolytic enzymes in soil particle-size fractions[J].Soil Biol Biochem,2005,37(1):35-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700