外源硅对植物抗盐性影响的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Beneficial effects of silicon on salt tolerance in plants
  • 作者:朱永兴 ; 夏雨晨 ; 刘乐承 ; 尹军良 ; 马东方
  • 英文作者:ZHU Yong-xing;XIA Yu-chen;LIU Le-cheng;YIN Jun-liang;MA Dong-fang;College of Horticulture and Gardening/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University;State Key Laboratory for Biology of Plant Diseases and Insect Pests/Institute of Plant Protection, Chinese Academy of Agriculture Sciences;College of Agriculture, Yangtze University;
  • 关键词: ; 大数据分析 ; 盐胁迫 ; 离子平衡 ; 氧化损伤 ; 水分代谢 ; 光合 ; 分子机制
  • 英文关键词:silicon;;big data analysis;;salt stress;;ion balance;;reactive oxygen species;;water metabolism;;photosynthesis;;molecular mechanism
  • 中文刊名:ZWYF
  • 英文刊名:Journal of Plant Nutrition and Fertilizers
  • 机构:长江大学园艺园林学院/湿地生态与农业利用教育部工程研究中心;植物病虫害生物学国家重点实验室/中国农业科学院植物保护研究所;长江大学农学院;
  • 出版日期:2019-03-25
  • 出版单位:植物营养与肥料学报
  • 年:2019
  • 期:v.25;No.126
  • 基金:国家自然科学基金项目(31701911);; 植物病虫害国家重点实验室2017年度开放课题基金项目(SKLOF201707);; 长江大学湿地生态与农业利用教育部工程研究中心开放基金项目(KF201707)资助
  • 语种:中文;
  • 页:ZWYF201903017
  • 页数:12
  • CN:03
  • ISSN:11-3996/S
  • 分类号:152-163
摘要
盐胁迫是世界范围内影响作物产量和品质的主要非生物胁迫之一,如何提高作物的抗盐性已经引起全世界的关注。硅(Si)是地壳中含量仅次于氧的第二大丰富元素。在pH值低于9的介质中,硅通常以单硅酸[Si(OH)_4]的形式被高等植物吸收。尽管目前硅仍然未被认为是植物生长的必需元素,但是作为植物生长的"有益元素",硅可以缓解各种生物胁迫和非生物胁迫对植物生长发育的抑制。大量的研究表明硅可参与调控植物抗盐的生理生化代谢过程,并与一些信号物质,如乙烯、水杨酸和多胺等存在互作。主要进展如下:1)植物对硅的吸收存在主动、被动和拒绝吸收三种,硅转运蛋白在硅的吸收和转运中起到非常重要的作用,但是关于该蛋白的编码基因在更多物种中的克隆和功能研究有待于进一步开展。2)硅可以调节盐胁迫下植物体内的离子平衡,降低植物根系对盐离子的吸收和向地上部的转运,并使盐离子更均匀的分布在根系中;改善盐胁迫下根系对钙、钾、氮等营养元素的吸收,缓解盐胁迫造成的营养失调。近期一些研究表明多胺可能参与硅对根系盐离子吸收的调控。3)硅可以通过调节水通道蛋白的表达和渗透调节物质的积累提高根系对水分的吸收和向地上部的转运,改善植株的水分状况。4)硅可通过调节抗氧化酶活性,降低活性氧的产生和积累,同时可以缓解盐胁迫对光合器官和光合色素造成的损伤,保证盐胁迫下植物光合作用的正常进行。5)植物耐盐的分子机制非常复杂,涉及大量基因的表达和调控以及信号转导过程,包括蛋白质组学和转录组学在内的组学研究策略为从分子水平揭示硅缓解胁迫的机理提供了有力的技术手段。转录组和蛋白质组学的研究表明硅可以通过调控转录因子、激素等相关基因的表达及蛋白的翻译和修饰来调控植物对盐胁迫的快速响应,提高植物的抗盐能力。6)硅吸收突变体的应用有助于我们更好的了解硅在调控植物生理生化代谢中所发挥的作用。
        High salinity is one of the major abiotic stressful factors affecting crop growth and productivity in agriculture system of the world. Therefore, improving the salt-tolerance of crops has attracted worldwide attention. Silicon element(Si) is the second most prevalent element in the earth's crust excepting for oxygen.When the pH of a solution is less than 9, silicon is usually absorbed in the form of silicic acid [Si(OH)_4]in plants. Although silicon has not been recognized as essential element for higher plants, it is considered to be a ‘beneficial element'. Especially, silicon can increase plants resistance to multiple stresses and improve the growth and development of plants under stress conditions. Many studies suggested that silicon actively involves the physiological and biochemical processes in plants under salt stress, and silicon has a crosstalk with the signaling molecules that include ethylene(ET), salicylic acid(SA), and polyamines(PAs). In this paper, the silicon accumulation and transportation, the beneficial regulatory role of Si are reviewed when the plants are subjected to the salt stress. Major progresses: 1) Si could be absorbed by plants in active, passive and rejective routes. Silicon transporters play important roles in silicon uptake, but the silicon uptake systems and their functions in different plant species need more investigations. 2) Silicon could alleviate salt damage through mediating ion balance under high salinity. Application of silicon can specifically decrease the uptake and transport of Na from roots to shoots, and make evenly distribute Na+ crossing the whole root section. In addition,silicon affects the uptake of some essential nutrients(e.g. Ca, K, N) in plant to alleviate adsorption competition between salt ions and essential nutrients. Recent studies suggested that polyamines play a regulatory role in promoting uptake of silicon-mediated nutrients under salt stress. 3) Both the up-regulation of silicon-mediated aquaporin gene expression and osmotic adjustment play important roles in increasing water uptake. 4) Silicon application alleviates oxidative stress damage to the plants by regulating the antioxidant defense and decreasing the production of reactive oxygen species(ROS). Meanwhile, silicon could alleviate the salt stress damage to the photosynthetic apparatus and prevent salt stress from destroying pigment, and thus improving the photosynthetic process. 5) Omics-based technologies, transcriptomic and proteomic analyses, provide powerful tools for better understanding the responsive mechanisms of silicon-triggered in alleviating environmental stresses at the molecular level. Both the transcriptome and proteome studies reveal that silicon could regulate the plants responses to salt stress through modulating the expressions of transcription factors and hormone-related genes as well as the translation of associated proteins. 6) The utilization of silicon mutant will be helpful to better understand the regulatory role of silicon in the physiological-biochemical metabolic processes in plants.
引文
[1]Yadav S,Irfan M,Ahmad A,et al.Causes of salinity and plant manifestations to salt stress:a review[J].Journal of Environmental Biology,2011,32(5):667-685.
    [2]蔡晓锋,胡体旭,叶杰,等.植物盐胁迫抗性的分子机制研究进展[J].华中农业大学学报,2015,34(3):134-141.Cai X F,Hu T X,Ye J,et al.Advances in molecular mechanism of plant salt stress resistance[J].Journal of Huazhong Agricultural University,2015,34(3):134-141.
    [3]Zhu Y X,Guo J,Feng R,et al.The regulatory role of silicon on carbohydrate metabolism in Cucumis sativus L.under salt stress[J].Plant and Soil,2016,406(1-2):231-249.
    [4]Zhu Y X,Xu X X,Hu Y H,et al.Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L.[J].Plant Cell Reports,2015,34(9):1629-1646.
    [5]Zhu Z J,Wei G Q,Li J,et al.Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber(Cucumis sativus L.)[J].Plant Science,2004,167(3):527-533.
    [6]Anjos R A R D,Santos L C D S,Oliveira D B D,et al.Initial growth of Jatropha curcas plants subjected to drought stress and silicon(Si) fertilization[J].Australian Journal of Crop Science,2017,11(4):479-484.
    [7]Muneer S,Park Y G,Kim S,et al.Foliar or subirrigation silicon supply mitigates high temperature stress in strawberry by maintaining photosynthetic and stress-responsive proteins[J].Journal of Plant Growth Regulation,2017,36(4):836-845.
    [8]Wu J W,Guo J,Hu Y H,et al.Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress[J].Frontiers in Plant Science,2015,6(4):453.
    [9]Van Bockhaven J,Spíchal L,Novák O,et al.Silicon induces resistance to the brown spot fungus Cochliobolus miyabeanus by preventing the pathogen from hijacking the rice ethylene pathway[J].New Phytologist,2015,206(2):761-773.
    [10]Zhu Y X,Gong H J.Beneficial effects of silicon on salt and drought tolerance in plants[J].Agronomy for Sustainable Development,2014,34(2):455-472.
    [11]Guntzer F,Keller C,Meunier J.Benefits of plant silicon for crops:a review[J].Agronomy for Sustainable Development,2012,32(1):201-213.
    [12]Rizwan M,Ali S,Ibrahim M,et al.Mechanisms of silicon-mediated alleviation of drought and salt stress in plants:a review[J].Environmental Science and Pollution Research,2015,22(20):15416-15431.
    [13]Ma J F,Yamaji N.Functions and transport of silicon in plants[J].Cellular and Molecular Life Sciences,2008,65(19):3049-3057.
    [14]Carey J C,Fulweiler R W.Silica uptake by Spartina-evidence of multiple modes of accumulation from salt marshes around the world[J].Frontiers in Plant Science,2014,5:186.
    [15]Liang Y C,Sun W C,Zhu Y G,et al.Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants:A review[J].Environmental Pollution,2007,147(2):422-428.
    [16]Landi S,Hausman J F,Guerriero G,et al.Poaceae vs.Abiotic Stress:focus on drought and salt stress,recent insights and perspectives[J].Frontiers in Plant Science,2017,8:1214.
    [17]Liang Y,Hua H,Zhu Y G,et al.Importance of plant species and external silicon concentration to active silicon uptake and transport[J].New Phytologist,2006,172(1):63-72.
    [18]Rios J J,Martinez-Ballesta M C,Ruiz J M,et al.Silicon-mediated improvement in plant salinity tolerance:the role of aquaporins[J].Frontiers in Plant Science,2017,8:948.
    [19]Gong H J,Randall D P,Flowers T J.Silicon deposition in the root reduces sodium uptake in rice(Oryza sativa L.)seedlings by reducing by pass flow[J].Plant,Cell and Environment,2006,29(10):1970-1979.
    [20]Shi Y,Zhang Y,Yao H J,et al.Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress[J].Plant Physiology and Biochemistry,2014,78(3):27-36.
    [21]Ma J F,Tamai K,Yamaji N,et al.A silicon transporter in rice[J].Nature,2006,440(7084):688-691.
    [22]Ma J F,Yamaji N,Tamai K,et al.Genotypic difference in silicon uptake and expression of silicon transporter genes in rice[J].Plant Physiology,2007,145(3):919-924.
    [23]Mitani N,Chiba Y,Yamaji N,et al.Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice[J].Plant Cell,2009,21(7):2133-2142.
    [24]Mitani N,Yamaji N,Ma J F.Identification of maize silicon influx transporters[J].Plant and Cell Physiology,2009,50(1):5-12.
    [25]Chiba Y,Mitani N,Yamaji N,et al.HvLsi1 is a silicon influx transporter in barley[J].Plant Journal for Cell&Molecular Biology,2010,57(5):810-818.
    [26]Yamaji N,Chiba Y,Mitani-Ueno N,et al.Functional characterization of a silicon transporter gene implicated in silicon distribution in barley[J].Plant Physiology,2012,160(3):1491-1497.
    [27]Montpetit J,Vivancos J,Mitani-Ueno N,et al.Cloning,functional characterization and heterologous expression of TaLsi1,a wheat silicon transporter gene[J].Plant Molecular Biology,2012,79(1-2):35-46.
    [28]Mitani N,Yamaji N,Ago Y,et al.Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation[J].Plant Journal,2011,66(2):231-240.
    [29]Sun H,Guo J,Duan Y K,et al.Isolation and functional characterization of CsLsi1,a silicon transporter gene in Cucumis sativus[J].Physiologia Plantarum,2017,159(2):201-214.
    [30]Vivancos J,Deshmukh R,Gregoire C,et al.Identification and characterization of silicon efflux transporters in horsetail(Equisetum arvense)[J].Journal of Plant Physiology,2016,200:82-89.
    [31]Yamaji N,Mitatni N,Ma J F.A transporter regulating silicon distribution in rice shoots[J].Plant Cell,2008,20(5):1381-1389.
    [32]Yamaji N,Ma J F.A transporter at the node responsible for intervascular transfer of silicon in rice[J].Plant Cell,2009,21(9):2878-2883.
    [33]Munns R,Tester M.Mechanisms of salinity tolerance[J].Annual Review of Plant Biology,2008,59(1):651-681.
    [34]Gupta B,Huang B.Mechanism of salinity tolerance in plants:physiological,biochemical,and molecular characterization[J].International Journal of Genomics,2014,1:701596.
    [35]Luyckx M,Hausman J F,Lutts S,et al.Silicon and plants:current knowledge and technological perspectives[J].Frontiers in Plant Science,2017,8:411.
    [36]Debona D,Rodrigues F A,Datnoff L E.Silicon's role in abiotic and biotic plant stresses[J].Annual Review of Phytopathology,2017,55(1):85-107.
    [37]Liang Y C.Effects of silicon on enzyme activity and sodium,potassium and calcium concentration in barley under salt stress[J].Plant and Soil,1999,209(2):217-224.
    [38]Wang X S,Han J G.Effects of NaCl and silicon on ion distribution in the roots,shoots and leaves of two alfalfa cultivars with different salt tolerance[J].Soil Science and Plant Nutrition,2007,53(3):278-285.
    [39]Yin L,Wang S,Li J,et al.Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor[J].Acta Physiologiae Plantarum,2013,35(11):3099-3107.
    [40]Tuna A L,Kaya C,Higgs D,et al.Silicon improves salinity tolerance in wheat plants[J].Environmental and Experimental Botany,2008,62(1):10-16.
    [41]Garg N,Bhandari P.Silicon nutrition and mycorrhizal inoculations improve growth,nutrient status,K+/Na+ratio and yield of Cicer arietinum L.genotypes under salinity stress[J].Plant Growth Regulation,2016,78(3):371-387.
    [42]Blumwald E.Sodium transport and salt tolerance in plants[J].Current Opinion in Cell Biology,2000,12(4):431-434.
    [43]Zhu J.Plant salt tolerance[J].Trends in Plant Science,2001,6(2):66-71.
    [44]Liang Y,Zhang W,Chen Q,et al.Effects of silicon on H+-ATPase and H+-PPase activity,fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley(Hordeum vulgare L.)[J].Environmental and Experimental Botany,2005,53(1):29-37.
    [45]Liang Y C,Zhang W H,Chen Q,et al.Effect of exogenous silicon (Si)on H+-ATPase activity,phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley(Hordeum vulgare L.)[J].Environmental and Experimental Botany,2006,57(3):212-219.
    [46]Ashraf M,Rahmatullah,Ahmad R,et al.Amelioration of salt stress in sugarcane(Saccharum officinarum L.)by supplying potassium and silicon in hydroponics[J].Pedosphere,2010,20(2):153-162.
    [47]Li H L,Zhu Y X,Hu Y H,et al.Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture[J].Acta Physiologiae Plantarum,2015,37(4):71.
    [48]Xu C X,Ma Y P,Liu Y L.Effects of silicon(Si)on growth,quality and ionic homeostasis of aloe under salt stress[J].South African Journal of Botany,2015,98:26-36.
    [49]Farshidi M,Abdolzadeh A,Sadeghipour H R.Silicon nutrition alleviates physiological disorders imposed by salinity in hydroponically grown canola(Brassica napus L.)plants[J].Acta Physiologiae Plantarum,2012,34(5):1779-1788.
    [50]Puyang X,An M,Xu L,et al.Protective effect of exogenous spermidine on ion and polyamine metabolism in Kentucky bluegrass under salinity stress[J].Horticulture Environment and Biotechnology, 2016,57(1):11-19.
    [51]Zhao F G,Song C P,He J,et al.Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities[J].Plant Physiology,2007,145(3):1061-1072.
    [52]Yin L N,Wang S W,Tanaka K,et al.Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L.[J].Plant Cell Environment,2016,39(2):245-258.
    [53]Wang S W,Liu P,Chen D Q,et al.Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber[J].Frontiers in Plant Science,2015,6:759.
    [54]Pandolfi C,Pottosin I,Cuin T,et al.Specificity of polyamine effects on NaCl-induced ion flux kinetics and salt stress amelioration in plants[J].Plant and Cell Physiology,2010,51(3):422-434.
    [55]Romero-Aranda M R,Jurado O,Cuartero J.Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status[J].Journal of Plant Physiology,2006,163(8):847-855.
    [56]Chen D Q,Yin L N,Deng X P,et al.Silicon increases salt tolerance by influencing the two-phase growth response to salinity in wheat (Triticum aestivum L.)[J].Acta Physiologiae Plantarum,2014,36(9):2531-2535.
    [57]Matoh T,Kairusmee P,Takahashi E.Salt-induced damage to rice plants and alleviation effect of silicate[J].Soil Science and Plant Nutrition,1986,32(2):295-304.
    [58]Liu P,Yin L N,Wang S W,et al.Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L.[J].Environmental and Experimental Botany,2015,111:42-51.
    [59]Gao X P,Zou C Q,Wang L J,et al.Silicon improves water use efficiency in maize plants[J].Journal of Plant Nutrition,2005,27(8):1457-1470.
    [60]Liu P,Yin L N,Deng X P,et al.Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L.[J].Journal of Experimental Botany,2014,65(17):4747-4756.
    [61]Coskun D,Britto D T,Jean Y,et al.Silver ions disrupt K+ homeostasis and cellular integrity in intact barley(Hordeum vulgare L.)roots[J].Journal of Experimental Botany,2012,63(1):151-162.
    [62]Dolan L,Davies J.Cell expansion in roots[J].Current Opinion in Plant Biology,2004,7(1):33-39.
    [63]Parida A K,Das A B.Salt tolerance and salinity effects on plants:a review[J].Ecotoxicology and Environmental Safety,2005,60(3):324-349.
    [64]Hajiboland R,Cheraghvareh L.Influence of Si supplementation on growth and some physiological and biochemical parameters in salt stressed tobacco(Nicotiana rustica L.)plants[J].Journal of Sciences Islamic Republic of Iran,2014,25(3):205-217.
    [65]Liang Y C,Chen Q,Liu Q,et al.Exogenous silicon(Si)increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley(Hordeum vulgare L.)[J].Journal of Plant Physiology,2003,160(10):1157-1164.
    [66]Li Y T,Zhang W J,Cui J J,et al.Silicon nutrition alleviates the lipid peroxidation and ion imbalance of Glycyrrhiza uralensis seedlings under salt stress[J].Acta Physiologiae Plantarum,2016,38(4):96.
    [67]Abbas T,Balal R M,Shahid M A,et al.Silicon-induced alleviation of NaCl toxicity in okra(Abelmoschus esculentus)is associated with enhanced photosynthesis,osmoprotectants and antioxidant metabolism[J].Acta Physiologiae Plantarum,2015,37(2):6.
    [68]Soylemezoglu G,Demir K,Inal A,et al.Effect of silicon on antioxidant and stomatal response of two grapevine(Vitis vinifera L.) rootstocks grown in boron toxic,saline and boron toxic-saline soil[J].Scientia Horticulturae,2009,123(2):240-246.
    [69]Abdel-Haliem M E F,Hegazy H S,Hassan N S,et al.Effect of silica ions and nano silica on rice plants under salinity stress[J].Ecological Engineering,2017,99:282-289.
    [70]王东明,贾媛,崔继哲.盐胁迫对植物的影响及植物盐适应性研究进展[J].中国农学通报,2009,25(4):124-128.Wang D M,Jia Y,Cui J Z.Advances in research on effects of salt stress on plant and adaptive mechanism of the plant to salinity[J].Chinese Agricultural Science Bulletin,2009,25(4):124-128.
    [71]Liang Y C.Effects of Si on leaf ultrastructure,chlorophyll content and photosynthetic activity in barley under salt stress[J].Pedosphere,1998,8(4):289-296.
    [72]朱永兴,李换丽,胡彦宏,等.硅酸盐提高番茄抗盐性的效应与生理机制[J].农业环境科学学报,2015,34(2):213-220.Zhu Y X,Li H L,Hu Y H,et al.Effect of silicate on salt resistance in tomato and underlying physiological mechanisms[J].Journal of Agro-Environment Science,2015,34(2):213-220.
    [73]Wei W,Li Q T,Chu Y N,et al.Melatonin enhances plant growth and abiotic stress tolerance in soybean plants[J].Journal of Experimental Botany,2015,66(3):695-707.
    [74]Gorbe E,Calatayud A.Applications of chlorophyll fluorescence imaging technique in horticultural research:A review[J].Scientia Horticulturae,2012,138:24-35.
    [75]汪保华,王亚峰,谢晓玲,等.盐胁迫下棉花叶绿素荧光参数的变化[J].湖北农业科学,2014,(7):1509-1512.Wang B H,Wang Y F,Xie X L,et al.Variation of chlorophyll fluorescence parameters of cotton under salt stress[J].Hubei Agriculture Sciences,2014,(7):1509-1512.
    [76]Kim Y H,Khan A L,Waqas M,et al.Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress[J].Journal of Plant Growth Regulation,2014,33(2):137-149.
    [77]Liang X L,Wang H H,Hu Y F,et al.Silicon does not mitigate cell death in cultured tobacco BY-2 cells subjected to salinity without ethylene emission[J].Plant Cell Reports,2015,34(2):331-343.
    [78]Muneer S,Jeong B R.Proteomic analysis of salt-stress responsive proteins in roots of tomato(Lycopersicon esculentum L.)plants towards silicon efficiency[J].Plant Growth Regulation,2015,77(2):133-146.
    [79]Chain F,C?tébeaulieu C,Belzile F,et al.A comprehensive transcriptomic analysis of the effect of silicon on wheat plants under control and pathogen stress conditions[J].Molecular Plant-microbe Interactions,2009,22(11):1323-1330.
    [80]Watanabe S,Shimoi E,Ohkama N,et al.Identification of several rice genes regulated by Si nutrition[J].Soil Science and Plant Nutrition,2004,50(8):1273-1276.
    [81]Fauteux F,Chain F,Belzile F,et al.The protective role of silicon in the Arabidopsis-powdery mildew pathosystem[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(46):17554-17559.
    [82]Van Bockhaven J,Steppe K,Bauweraerts I,et al.Primary metabolism plays a central role in moulding silicon-inducible brown spot resistance in rice[J].Molecular Plant Pathology,2015,16(8):811-824.
    [83]Brunings A M,Datnoff L E,Ma J F,et al.Differential gene expression of rice in response to silicon and rice blast fungus Magnaporthe oryzae[J].Annals of Applied Biology,2009,155(2):161-170.
    [84]Holz S,Kube M,Bartoszewski G,et al.Initial studies on cucumber transcriptome analysis under silicon treatment[J].Silicon,2015.doi:10.1007/s12633-015-9335-2.
    [85]Zhu Y X,Yin J L,Liang Y F,et al.Transcriptomic dynamics provide an insight into the mechanism for siliconmediated alleviation of salt stress in cucumber plants[J].Ecotoxicology and Environmental Safety,2019,174:245-254.
    [86]Ma J F,Tamai K,Ichii M,et al.A rice mutant defective in Si uptake[J].Plant Physiology,2002,130(4):2111-2117.
    [87]Isa M,Bai S,Yokoyama T,et al.Silicon enhances growth independent of silica deposition in a low-silica rice mutant,lsi1[J].Plant and Soil,2010,331(1/2):361-375.
    [88]张文强,黄益宗,招礼军,等.盐胁迫下外源硅对硅突变体与野生型水稻种子萌发的影响[J].生态毒理学报,2009,4(6):867-873.Zhang W Q,Huang Y Z,Zhao L J,et al.Effect of silicon on the germination of Si mutant rice and wild rice seeds under salt stress[J].Asian Journal of Ecotoxicology,2009,4(6):867-873.
    [89]张文强,黄益宗,招礼军.盐胁迫下外源硅对硅突变体和野生型水稻生物量与营养元素含量的影响[J].现代农业科学,2009,16(3):24-28.Zhang W Q,Huang Y Z,Zhao L J.Effect of silicon on the biomass and nutritional elements uptake of Si mutant rice and wild rice under salt stress[J].Modern Agricultural Sciences,2009,16(3):24-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700