CMS包覆纳米零价铁去除2,4-二氯酚的条件优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Conditions optimization for 2, 4-dichlorophenol removal by CMS-coating nano zero-valent iron
  • 作者:郭汶俊 ; 张永祥 ; 井琦 ; 白冰 ; 常杉
  • 英文作者:GUO Wenjun;ZHANG Yongxiang;JING Qi;BAI Bing;CHANG Shan;College of Architecture and Civil Engineering,Beijing University of Technology;
  • 关键词:包覆型纳米零价铁 ; 2 ; 4-二氯酚 ; 响应面法
  • 英文关键词:coated nano zero-valent iron;;2,4-dichlorophenol;;response surface methodology
  • 中文刊名:HJJZ
  • 英文刊名:Chinese Journal of Environmental Engineering
  • 机构:北京工业大学建筑工程学院;
  • 出版日期:2018-12-05
  • 出版单位:环境工程学报
  • 年:2018
  • 期:v.12
  • 基金:国家重点研发计划(2016YFC0401404);; 北京市科委项目(Z161100004516015)
  • 语种:中文;
  • 页:HJJZ201812002
  • 页数:8
  • CN:12
  • ISSN:11-5591/X
  • 分类号:7-14
摘要
针对纳米零价铁(Fe~0)去除2,4-二氯酚(2,4-DCP)时易团聚、易氧化、去除效率差等问题,采用环境友好材料羧甲基淀粉钠(CMS)对纳米零价铁进行了包覆,制成包覆型纳米零价铁。探究了包覆比例(CMS:Fe0)、pH、包覆型纳米零价铁投加量等单因素对去除率的影响。在单因素实验的基础上,以包覆比例、pH、包覆型纳米零价铁的投加量为考察因素,以2,4-DCP的去除率为响应值,采用二次多项式响应面探究多因素交互作用对包覆型纳米零价铁去除2,4-DCP的影响。利用响应面优化模型对包覆型纳米零价铁去除2,4-DCP进行优化。模型优化结果显示:包覆型纳米零价铁去除2,4-DCP的最佳条件为pH 3.0,纳米零价铁包覆比例3.59:1,包覆型纳米零价铁的投加量7.96 g·L~(-1),模型预测2,4-DCP的最高去除率为90.03%,实验值为85.77%,两者相对误差为4.73%,证明了优化模型的可靠性。
        Aiming at the problems of easy agglomeration, easy oxidation and poor removal efficiency when 2,4-dichlorophenol was removed by nano zero-valent iron(n ZVI) alone, a kind of environmentally friendly material of carboxymethyl starch sodium(CMS) was used to coat n ZVI for a new CMS-coated Fe~0 preparation. The effects of single factor variables such as coating ratio(CMS:Fe0), pH, and n ZVI dosage on the removal rate were investigated. On the basis of single-factor experiments, the response surface methodology was used to study the impact of multi-factor interactions on 2,4-dichlorophenol removal by the CMS coated n ZVI when the coating ratio, pH, and Fe0 dosage were taken as the investigation factors, and the removal rate of 2,4-dichlorophenol(2,4-DCP) was used as the response value, then a quadratic polynomial optimization model was established to optimize above removal process. The results showed that the optimal conditions are following: the pH was 3.0, the coating ratio for n ZVI was 3.59:1, the CMS coated n ZVI dosage was 7.96 g·L-1.The maximum removal rate of 2,4-DCP predicted by the model was 90.03%, and the corresponding experimental value was85.77%. The relative error of 4.73% between them proved the reliability of the optimization model.
引文
[1]孔殿超,周跃飞,陈天虎,等.针铁矿、磁铁矿和石膏对2,4-二氯苯酚厌氧降解的影响[J].环境科学,2017,38(7):2875-2882. DOI:10.13227/j.hjkx.201608169.
    [2] ZHANG X N, HUANG W M, WANG X, et al. Biofilm-electrode process with high efficiency for degradation of2,4-dichlorophenol[J]. Environmental Chemistry Letters,2011,9(3):383-388. DOI:10.1007/s10311-010-0290-2.
    [3]胡晓钧,侯永侠,杨继松,等.2,4鄄二氯苯酚在土壤与河流底泥中降解动力学[J].生态学杂志,2011,20(3):424-429.
    [4]李保华,孙治荣,杨冬梅.铁系金属对氯代有机物的还原脱氯研究进展[J].化工环保,2007,27(4):323-327.
    [5] LI R, GAO Y, JIN X, et al. Fenton-like oxidation of 2,4-DCP in aqueous solution using iron-based nanoparticles as the heterogeneous catalyst[J]. Journal of Colloid and Interface Science,2015,438:87-93. DOI:10.1016/j.jcis.2014.09.082.
    [6] GILLHAM R W, OHANNESIN S F. Enhanced degradation of halogenated aliphatics by zero-valent iron[J]. Ground Water,1994,32(6):958-967. DOI:10.1111/j.1745-6584.1994.tb00935.x.
    [7] KITO A.铜离子/富里酸对纳米零价铁胶体稳定性、迁移性和反应活性的影响研究[D].长沙:湖南大学,2016.
    [8]吕晓书.稳定化纳来级零价铁的制备及对水中Cr(Ⅵ)的去除机制研究[D].杭州:浙江大学,2015.
    [9]郭建波.壳聚糖稳定纳米零价铁的制备及其去除六价铬的研究[D].青岛:中国石油大学(华东),2016.
    [10]成岳,焦创,樊文井,等.包覆型纳米零价铁的制备及其去除水中的活性艳蓝[J].环境工程学报,2013,7(1):53-57.
    [11]王毅.纳米Fe/Cu双金属颗粒处理六价铬污染的研究[D].杭州:浙江大学,2015.
    [12]张永祥,常杉,李飞,等.稳定型纳米零价铁去除地下水中2,4-二氯苯酚[J].环境科学,2017,38(6):2385-2392. DOI:10.13227/j.hjkx.201609254.
    [13]李璐玮,祝方,马少云,等.响应面分析法优化纳米零价铁铜双金属修复土壤浸提液中Cr(Ⅵ)[J].环境工程学报,2017,11(1):608-612. DOI:10.12030/j.cjee.201509097.
    [14]李晓雅,朱玲,王春雨,等.响应曲面优化烃类污染土壤热强化SVE修复工艺[J].环境工程学报,2018,12(3):914-922.DOI:10.12030/j.cjee.201708151.
    [15] ARABI S, SOHRABI M R. Experimental design and response surface modelling for optimization of vat dye from water by nano zero valent iron(NZVI)[J]. Acta Chimica Slovenica,2013,60:853-860.
    [16]郭俊元,陈诚,刘文杰.微生物絮凝剂及与壳聚糖复配处理亚甲基蓝废水[J].中国环境科学,2017,37(9):3346-3352.
    [17]常杉.分散型纳米零价铁降解水中2,4-二氯苯酚的行为研究[D].北京:北京工业大学,2017.
    [18] GAO W, ZHANG Y, ZHANG X, et al. Permeable reactive barrier of coarse sand-supported zero valent iron for the removal of2,4-dichlorophenol in groundwater[J]. Environmental Science and Pollution Research,2015,22(21):16889-16896. DOI:10.1007/s11356-015-4912-x.
    [19] SUN Y, LI X, ZHANG W, et al. A method for the preparation of stable dispersion of zero-valent iron nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,308(1/2/3):60-66. DOI:10.1016/j.colsurfa.2007.05.029.
    [20]黄潇月,王伟,凌岚,等.纳米零价铁与重金属的反应:“核-壳”结构在重金属去除中的作用[J].化学学报,2017,75(6):529-537.
    [21] SHIH Y, HSU C, SU Y. Reduction of hexachlorobenzene by nanoscale zero-valent iron:Kinetics, pH effect,and degradation mechanism[J]. Separation and Purification Technology,2011,76(3):268-274. DOI:10.1016/j.seppur.2010.10.015.
    [22] CHEN J L, Al-ABED S R, RYAN J A, et al. Effects of pH on dechlorination of trichloroethylene by zero-valent iron[J]. Journal of Hazardous Materials,2001,83(3):243-254. DOI:10.1016/S0304-3894(01)00193-5.
    [23] LIU X, LI X, YANG Q, et al. Landfill leachate pretreatment by coagulation-flocculation process using iron-based coagulants:Optimization by response surface methodology[J]. Chemical Engineering Journal,2012,200-202:39-51. DOI:10.1016/j.cej.2012.06.012.
    [24] LIU C B, LIU Y, LIAO W. RefApplication of statistically-based experimental designs for the optimization of nisin production from whey[J]. Biotechnology Letters,2003,25(11):877-882. DOI:10.1023/A:1024009027255.
    [25]祝敏平,王向宇,李芳,等.纳米铁的改性及其去除氯代有机物研究进展[J].化工进展,2011,30(12):2747-2754.
    [26]侯春凤,葛小鹏,周岩梅,等.纳米铁颗粒物表征及其对2,4-二氯苯酚的脱氯降解性能[J].科学通报,2009,54(23):3623-3629.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700