基于流固耦合的水下井口系统拖曳系数研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Drag Coefficient of Subsea Wellhead System
  • 作者:钟功祥 ; 张言开
  • 英文作者:Zhong Gongxiang;Zhang Yankai;MOE Key Laboratory of Oil & Gas Equipment,Southwest Petroleum University;
  • 关键词:水下井口系统 ; 拖曳系数 ; 阻力系数 ; 流固耦合 ; 防喷器组
  • 英文关键词:subsea wellhead system;;drag coefficient;;resistance coefficient;;fluid-structure interaction;;blowout preventer stack
  • 中文刊名:SYJI
  • 英文刊名:China Petroleum Machinery
  • 机构:西南石油大学石油天然气教育部重点实验室;
  • 出版日期:2019-03-10
  • 出版单位:石油机械
  • 年:2019
  • 期:v.47;No.481
  • 基金:西南石油大学石油天然气装备教育部重点实验室2017年度开放课题“深海输流立管多因素联合作用下耦合振动与疲劳特性研究”(OGE201702-26)
  • 语种:中文;
  • 页:SYJI201903009
  • 页数:6
  • CN:03
  • ISSN:42-1246/TE
  • 分类号:51-56
摘要
分析水下井口系统力学特性时,需要确定水下井口系统的拖曳系数。鉴于此,采用Hydril公司的防喷器组单元尺寸参数为建模标准,并基于Transocean公司防喷器组的选型依据进行建模。在ANSYS流固耦合模块中对适用于不同深度的防喷器组型号及该深度下海水水体环境进行数值模拟。研究结果给出了适用于不同环境下的水下井口拖曳系数,并表明拖曳系数与传统确定方法相比具有较大的偏差,其与防喷器组结构尺寸相关明显,与雷诺数关系较小,即在静水体环境下,防喷器组拖曳系数可近似于仅与其型号有关。研究结果可为水下井口力学分析提供一定的参考依据。
        Analysis on the mechanical properties of the subsea wellhead system requires the understanding of the system's drag coefficient. Hydril's BOP stack dimension parameters are used for modeling. Modeling is conducted based on the selection of Transocean's BOP stack. Numerical simulations of the BOP stacks for different water depths and the corresponding seawater environment are conducted in the ANSYS fluid-structure interaction module. The results offer the subsea wellhead drag coefficient for different environments,which has a large deviation compared with that using traditional method. The subsea wellhead drag coefficient has significant correlation with the structure of the BOP stack and has a small relationship with the Reynolds number. That is,in a still water environment,the BOP stack drag coefficient may be approximately only related to its model number. The study can provide a reference for the mechanical analysis of subsea wellhead system.
引文
[1]贾星兰,方华灿.海洋石油结构物阻力系数CD的实验研究[J].石油矿场机械,1995,24(4):30-33.JIA X L,FANG H C.A experimental study on the resistance coefficient CDof marine petroleum structure[J].Oil Field Equipment,1995,24(4):30-33.
    [2]LOPEZ C F,PORDAL H,BHALLA K,et al.Estimation of BOP stack drag and added mass using computational fluid dynamics[R].OTC 27528-MS,2017.
    [3]苏堪华.深水钻井井口力学分析及导管承载能力研究[D].东营:中国石油大学(华东),2009.SU K H.The research on subsea wellhead and casing bearing force in deep water[D].Dongying:China University of Petroleum(Huadong),2009.
    [4]林秀娟,肖文生,王鸿雁.深水采油树下放过程钻柱力学分析[J].中国石油大学学报(自然科学版),2011,35(5):125-129.LIN X J,XIAO W S,WANG H Y.Drilling string mechanical analysis of running deep water oil tree[J].Journal of China University of Petroleum(Edition of Natural Science),2011,35(5):125-129.
    [5]ZEDLER S E,KANSCHAT G,HOTEIT I,et al.Estimation of the drag coefficient from the upper ocean response to a hurricane:a variational data assimilation approach[J].Ocean Modelling,2013,68(49):57-71.
    [6]赵鹏良,王嘉松,蒋世全,等.海洋立管涡激振动的流固耦合模拟计算[J].海洋技术,2010,29(3):73-77.ZHAO P L,WANG J S,JIANG S Q,et al.The fluidstructure simulation of vortex-induced vibration of marine riser[J].Journal of Marine Technology,2010,29(3):73-77.
    [7]陈禹.海洋深水管桩模型的涡激振动数值模拟研究[D].舟山:浙江海洋大学,2015.CHEN Y.The study of numerical simulation on the vortex-induced vibration of deep water pipe model[D].Zhoushan:Zhejiang Ocean University,2015.
    [8]YANG W Y,AI Z J,ZHANG X D,et al.Nonlinear three-dimensional dynamics of a marine viscoelastic riser subjected to uniform flow[J].Ocean Engineering,2018,149:38-52.
    [9]陈文礼,周性坤,郑苗子,等.基于微分变换法的海洋立管模态参数影响分析[J].石油机械,2018,46(1):33-39.CHEN W L,ZHOU X K,ZHENG M Z,et al.Impact analysis of modal parameters of marine riser based on differential transformation method[J].China Petroleum Machinery,2018,46(1):33-39.
    [10]杨进.ANSYS在海洋石油工程中的应用[M].北京:石油工业出版社,2010.YANG J.The application of ANSYS in offshore engineering of petroleum[M].Beijing:Petroleum Industry Press,2010.
    [11]苏堪华,管志川,魏路,等.深水水上防喷器钻井系统水下井口稳定性分析[J].中国海上油气,2009,21(3):180-185.SU K H,GUAN Z C,WEI L,et al.Stability analysis of subsea wellhead of surface blowout preventer system in deep water[J].China Offshore Oil and Gas,2009,21(3):180-185.
    [12]胡育佳.桩基非线性静动力学特性研究[D].上海:上海大学,2008.HU Y J.The research on non-linear static and dynamic characteristics of piles[D].Shanghai:Shanghai University,2008.
    [13]方华灿.海洋石油工程[M].北京:石油工业出版社,2010.FANG H C.Offshore engineering of petroleum and gas[M].Beijing:Petroleum Industry Press,2010.
    [14]沈建华,周甦芳,董玉来,等.2004年东海及黄海部分海域表层水温分布状况[J].海洋学研究,2007,25(3):14-22.SHEN J H,ZHOU S F,DONG Y L,et al.The surface temperature distribution of east china sea and yellow sea in 2004[J].Journal of Marine Science,2007,25(3):14-22.
    [15]于非,张志欣,兰健,等.南黄海春季水温分布特征的分析[J].海洋科学进展,2005,23(3):281-288.YU F,ZHANG Z X,LAN J,et al.The analysis of characters of temperature distribution of Yellow Sea and South China Sea in spring[J].Advances in Marine Science,2005,23(3):281-288.
    [16]NAKAGAWA E Y,MARTINS LAGE A C V.Kill and blow-out control development for deep water operations[R].SPE 27497,1994.
    [17]ROBERT D G.Blowout and well control handbook[M].Beijing:Petroleum Industry Press,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700