水驱气藏储气库运行损耗微观机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The microscopic mechanism of operating loss in underground gas storage rebuilt from water-drive gas reservoir
  • 作者:石磊 ; 邵龙义 ; 王皆明 ; 朱华银
  • 英文作者:SHI Lei;SHAO Longyi;WANG Jieming;ZHU Huayin;China University of Mining and Technology;PetroChina Research Institute of Petroleum Exploration and Development;CNPC Key Laboratory of Underground Oil/Gas Storage;
  • 关键词:水驱气藏储气库 ; 周期注采 ; 孔隙储集空间 ; 物理模拟 ; 运行损耗 ; 微观机理
  • 英文关键词:underground gas storage rebuilt from water-drive gas reservoir;;cyclic injection-production;;porous reservoir space;;physical simulation;;operating loss;;microscopic mechanism
  • 中文刊名:YQCY
  • 英文刊名:Oil & Gas Storage and Transportation
  • 机构:中国矿业大学(北京);中国石油勘探开发研究院;中国石油集团公司油气地下储库工程重点实验室;
  • 出版日期:2018-03-29 08:53
  • 出版单位:油气储运
  • 年:2018
  • 期:v.37;No.354
  • 基金:国家科技重大专项资助项目“致密砂岩气有效开发评价技术”,2011ZX05013-002
  • 语种:中文;
  • 页:YQCY201806011
  • 页数:6
  • CN:06
  • ISSN:13-1093/TE
  • 分类号:64-69
摘要
储气库运行损耗微观机理是研究水驱气藏储气库周期注采过程储层水侵伤害的关键。针对储气库高速注采运行水体往复运移对储集空间动用效率的影响,结合储气库周期注采模拟核磁共振、微观可视化模拟技术,分析储气库微观孔隙中两相流体分布及运移特征,量化分析地下储集空间动用特征,评价水驱气藏储气库注采运行损耗微观机理及其主控因素。结果表明:气水过渡带是水驱气藏储气库注采运行发生损耗的核心区域,气水互锁作用与储气库的注采损耗密切相关。研究结果为深入开展水驱气藏储气库注采运行方案优化提供了技术支持与重要依据。
        Microscopic mechanism of operating loss in underground gas storage(UGS) plays a key role in investigating the damage of water intrusion to the reservoir during the cyclic injection-production operation of water-drive gas reservoir UGS. Considering the effect of the moving back and forth of the water during UGS high-speed injection-production operation, UGS cyclic injection-production simulation NMR and microscopic visualization simulation technology were used jointly to investigate the distribution and migration characteristics of two-phase fluid in microscopic pores of UGS, analyze the utilization characteristics of underground reservoir space quantitatively and evaluate the microscopic mechanism and main controlling factors of operating loss in the water-drive gas reservoir UGS. It is indicated that the gas-water transition zone is the core region of operating loss during the injection-production operation of water-drive gas reservoir UGS and the watergas interlocking is in close relation with UGS injection-production loss. The research results provide the technical support and important basis for the optimization of injection-production operation scheme of water-drive gas reservoir UGS.
引文
[1]BEN T,PEI C Y,ZHANG D L,et al.Gas storage in porous aromatic frameworks(PAFs)[J].Energy and Environmental Science,2011,4(10):3991-3999.
    [2]SHIN C H,LEE J H.A numerical study on the compositional variation and the validity of conversion of a gas condensate reservoir into underground storage[J].Energy Sources,Part A:Recovery,Utilization and Environmental Effects,2011,33(20):1921-1932.
    [3]RIOS R B,BASTOS M,AMORA M R,et al.Experimental analysis of the efficiency on charge/discharge cycles in natural gas storage by adsorption[J].Fuel,2011,90(1):113-119.
    [4]WOOD D J,LAKE L W,JOHNS R T,et al.A screening model for CO2 flooding and storage in gulf coast reservoirs based on dimensionless groups[J].SPE Reservoir Evaluation&Engineering,2008,11(3):513-520.
    [5]范子菲,程林松,宋珩,等.带气顶油藏油气同采条件下流体界面移动规律[J].石油勘探与开发,2015,42(5):683-690.FAN Z F,CHENG L S,SONG H,et al.Fluid interface moving for the concurrent production of gas cap and oil ring of gas cap reservoirs[J].Petroleum Exploration and Development,2015,42(5):683-690.
    [6]XU P,YU B M.Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry[J].Advances in Water Resources,2008,34(1):74-81.
    [7]ARNS C H,BAUGET F,LIMAYE A,et al.Pore-scale characterization of carbonates using X-ray microtomography[J].SPE Journal,2005,10(4):475-484.
    [8]COST A A.Permeability-porosity relationship:A reexamination of the Dozen-Carman equation based on a fractal pore-space geometry assumption[J].Geophysical Research Letters,2006,33(2):L02318.
    [9]WANG Z,HOLDITCH S A.A comprehensive parametric simulation study of the mechanisms of a gas storage aquifer[J].Society of Petroleum Engineers,2005:1-8.
    [10]SHI L,WANG J M,LIAO G Z,et al.Mechanism of gas-water flow at pore-level in aquifer gas storage[J].Journal of Central South University,2013,20(12):3620-3626.
    [11]YU B M.Analysis of flow in fractal porous media[J].Applied Mechanics Reviews,2008,61(4):50-80.
    [12]石磊,廖广志,熊伟,等.水驱砂岩气藏型地下储气库气水二相渗流机理[J].天然气工业,2012,32(9):85-87.SHI L,LIAO G Z,XIONG W,et al.Gas-water percolation mechanism in an underground gas storage built on a water-drive sandstone gas reservoir[J].Natural Gas Industry,2012,32(9):85-87.
    [13]张建国,刘锦华,何磊,等.水驱砂岩气藏型地下储气库长岩心注采实验研究[J].石油钻采工艺,2013,35(6):69-72.ZHANG J G,LIU J H,HE L,et al.Long core injectionproduction experiments study on water flooding sandstone gas reservoir type underground gas storage[J].Oil Drilling&Production Technology,2013,35(6):69-72.
    [14]王为民,郭和坤,叶朝辉.利用核磁共振可动流体评价低渗透油田开发潜力[J].石油学报,2001,22(6):40-44.WA N G W M,G UO H K,Y E C H.T he ev a l u a t i o n o f development potential in low permeability oilfield by the aid of NMR movable fluid detecting technology[J].Acta Petrolei Sinica,2001,22(6):40-44.
    [15]姜汉桥,宋亮,张贤松,等.基于核磁共振的正韵律厚油层高含水期挖潜室内实验[J].中国海上油气,2014,26(6):40-43.JIANG H Q,SONG L,ZHANG X S,et al.Laboratory NMR experiments on tapping the production potential of positive rhythmic and thick oil reservoirs in high water-cut stage[J].China Offshore Oil and Gas,2014,26(6):40-43.
    [16]陈斌,孙卫,明红霞,等.特低渗透储层可动流体饱和度影响因素分析——以安塞油田长6储层为例[J].石油化工应用,2014,33(9):68-74.CHEN B,SUN W,MING H X,et al.Movable fluid saturation factor analysis of low permeability reservoir:taking the Chang 6reservoir in the Ansai oil field as an example[J].Petrochemical Industry Application,2014,33(9):68-74.
    [17]李鹏举,谷宇峰.核磁共振T2谱转换伪毛管压力曲线的矩阵方法[J].天然气地球科学,2015,26(4):700-705.LI P J,GU Y F.Matrix method of transforming NMR T2spectrum to pseudo capillary pressure curve[J].Natural Gas Geoscience,2015,26(4):700-705.
    [18]李太伟,郭和坤,金智荣,等.低渗透储层水锁伤害及解除机理核磁共振实验研究[J].石油化工应用,2014,33(12):28-32.LI T W,GUO H K,JIN Z R,et al.Experimental study on water-blocking damage mechanism and its solution mechanism in low permeability reservoirs by nuclear magnetic resonance[J].Petrochemical Industry Application,2014,33(12):28-32.
    [19]吴国铭,李熙喆,何宇锋,等.碳酸盐岩储层岩心T2谱分形特征探究——以安岳气田为例[J].科学技术与工程,2015,15(14):55-59.WU G M,LI X Z,HE Y F,et al.The exploration on fractal feature of NMR T2 spectra for carbonate reservoir:a case study from Anyue Gas Field[J].Science Technology and Engineering,2015,15(14):55-59.
    [20]唐立根,王皆明,白凤娟,等.基于修正后的物质平衡方程预测储气库库存量[J].石油勘探与开发,2014,41(4):480-484.TANG L G,WANG J M,BAI F J,et al.Inventory forecast in underground gas storage based on modified material balance equation[J].Petroleum Exploration and Development,2014,41(4):480-484.
    [21]SHI L,GAO S S,XIONG W.Physical simulation of the mechanism for operation of water-encroached(flooded)under ground gasstorage facilities[J].Chemistry and Technology of Fuels and Oils,2012,47(6):426-433.
    [22]胡世莱,李继强,姜楠,等.水驱气藏水侵动态储量损失实验研究[J].特种油气藏,2017,24(5):146-149.HU S L,LI J Q,JIANG N,et al.Experimental study on dynamic reserves loss by water invasion in water-driven gas reservoirs[J].Special Oil&Gas Reservoirs,2017,24(5):146-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700