杨木静动态压缩本构模型研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Static and Dynamic Compression Constitutive Model of Poplar Wood
  • 作者:许威
  • 英文作者:XU Wei;Harbin University of Commerce;
  • 关键词:杨木 ; 静动态压缩加载试验 ; 多孔材料特征 ; 应变率 ; 本构模型
  • 英文关键词:poplar wood;;static and dynamic compression loading experiments;;porous material characteristics;;strain rate;;constitutive model
  • 中文刊名:BZGC
  • 英文刊名:Packaging Engineering
  • 机构:哈尔滨商业大学;
  • 出版日期:2019-06-10
  • 出版单位:包装工程
  • 年:2019
  • 期:v.40;No.401
  • 基金:哈尔滨商业大学校级青年创新人才培养计划(17XN017)
  • 语种:中文;
  • 页:BZGC201911012
  • 页数:8
  • CN:11
  • ISSN:50-1094/TB
  • 分类号:96-103
摘要
目的以杨木为研究对象,研究其静动态压缩载荷作用下应力-应变曲线的变化特征,建立适合的本构模型,并对其进行描述。方法对杨木试件进行静动态压缩加载试验,分析静动态压缩载荷作用下杨木应力-应变曲线的变化特征,构建适用于静动态压缩载荷作用下杨木的本构模型。结果静态压缩加载杨木的应力-应变曲线分为线弹性阶段、屈服阶段和密实化阶段等3个部分,动态压缩加载杨木的应力-应变曲线分为线弹性阶段和屈服阶段等2个部分;静态压缩加载时,杨木轴向屈服应力最大,分别是径向和弦向的5.70倍和7.75倍;动态压缩加载时,当应变率从400 s~(-1)增加到1000 s~(-1)时,径向、弦向和轴向的屈服应力分别增加了1.51,1.59,3.12倍,杨木的屈服应力具有应变率敏感性;采用包含应变率影响的本构方程来描述杨木在静动态压缩载荷作用下的本构关系是比较合适的。结论杨木是一种应变率敏感材料,静动态压缩载荷作用下杨木的应力-应变曲线均表现出多孔材料的特征,将多孔材料本构模型应用于木材是可行的。
        The work aims to study the stress-strain variation characteristics of the poplar under the static and dynamic compression loading with the poplar as the research object, and build proper constitutive model to describe it. Through static and dynamic compression loading test on poplar specimen, the stress-strain variation characteristics of the poplar were analyzed, and the constitutive model suitable for the poplar under static and dynamic compression load was built.The study found that under static compression loading of poplar wood from the stress-strain curve was divided into three parts: linear elastic stages, yield stages and densification stage. The dynamic compression loading of poplar wood from the stress-strain curve was divided into two parts: stages of linear elastic and yield. During static compression loading, the axial yield stress of poplar was the largest, and it was 5.70 times and 7.75 times of radial and tangential yield stress respectively. During dynamic compression loading, when the strain rate was increased to 1000 s~(-1) from 400 s~(-1), radial, tangential to yield stress and axial was respectively increased by 1.51 times, 1.59 times and 3.12 times; the yield stress of poplar wood had strong strain rate sensitivity. It is more appropriate to describe the constitutive relation under static and dynamic compression loading with constitutive equation containing the influence of strain rate. Poplar is a strain rate sensitive material. Under static and dynamic compression loading, poplar wood from the stress-strain curve shows the characteristics of the porous materials. It is feasible to apply the constitutive model of porous materials to the wood.
引文
[1]HUA J,CHEN G W,SHI S Q.Effect of Incorporating Chinese Poplar in Wood Chips on Fiber Refining[J]Forest Products Journal,2010,60(4):362-365.
    [2]张秀利,梁迎春.机械结构的多目标模糊优化方法[J].哈尔滨工业大学学报,1999,31(5):14-17.ZHANG Xiu-li,LIANG Ying-chun.Multiobjective Fuzzy Optimization of Mechanical Structures[J].Journal of Harbin Institute of Technology,1999,31(5):14-17.
    [3]邓斌,黄洪钟,王金诺.多目标模糊优化的数学模型及其求解原理和方法[J].机械设计与研究,1996,7(1):8-13.DENG Bin,HUANG Hong-zhong,WANG Jin-nuo.Mathematical Model of Multi-objective Fuzzy Optimization and Its Solving Principle and Method[J].Mechanical Design and Research,1996,7(1):8-13.
    [4]RUNKLERA T A,GERSTORER E.Modelling and Optimization of a Refining Process for Fiber Board Production[J].Control Engineering Practice,2003,11:1229-1241.
    [5]SANTE W.Stress-strain Relationships for Spruce Wood:Influence of Strain Rate,Moisture Content and Loading Direction[J].Society for Experimental Mechanics,2004,44(1):44-48.
    [6]赵彬.基于木材包装存在的主要问题及对策研究[J].包装工程,2016,37(23):196-202.ZHAO Bin.Main Problems Existing in Wooden Packaging and Solution[J].Packaging Engineering,2016,37(23):196-202.
    [7]徐朝阳,徐德良,贾翀,等.硬松类木材横纹压缩时能量吸收特性研究[J].包装工程,2014,35(17):11-14.XU Zhao-yang,XU De-liang,JIA Chong,et al.Energy Absorption Characteristics of Hard Pine during Across-compression[J].Packaging Engineering,2014,35(17):11-14.
    [8]高晨超,张洋,王超.高温热水处理对刨花制板性能的影响[J].包装工程,2015,36(7):36-39.GAO Chen-chao,ZHANG Yang,WANG Chao.Effect of High-temperature Hydrothermal Treatment on Properties of Particle Board[J].Packaging Engineering,2015,36(7):36-39.
    [9]何淑芬,王伟.弹药木包装箱阻燃处理的研究[J].包装工程,2011,32(23):20-22.HE Shu-fen,WANG Wei.Study on Fire Retarding Treatment of Ammunition Wood Packaging Box[J].Packaging Engineering,2011,32(23):20-22.
    [10]张承革,石友强,郭睦基,等.新型木塑复合材料及其制备方法研究[J].包装工程,2014,35(3):137-142.ZHANG Cheng-ge,SHI You-qiang,GUO Mu-ji,et al.A New Type of Wood-plastic Composite Material and Its Preparation Method[J].Packaging Engineering,2014,35(3):137-142.
    [11]刘一星.木材横纹压缩大变形应力-应变关系的定量表征[J].林业科学,1995,31(5):436-442.LIU Yi-xing.Quantitative Expression on the Large Transverse Compressive Deformation Relationships between Stree and Strain of Wood[J].Scientia Silvae Sinicae,1995,31(5):436-442.
    [12]陶俊林,蒋平,余作生.木材静压大变形本构关系研究[J].力学与实践,2000,22(5):25-27.TAO Jun-lin,JIANG Ping,YU Zuo-sheng.On the Static Constitutive Relation of Wood with Large Deformation[J].Mechanics in Engineering,2000,22(5):25-27.
    [13]张红为,胡兵,邵卓平.杨木压缩应力-应变关系研究[J].安徽农业大学学报,2010,37(4):665-668.ZHANG Hong-wei,HU Bing,SHAO Zhuo-ping.Stress Strain Relationship with Compression of Poplar[J].Journal of Anhui Agricultural University,2010,37(4):665-668.
    [14]BODIG J.Stress-strain Relationship for Wood in Transverse Compression[J].Journal of Materials,1966,1(3):645-666.
    [15]ADALIAN C,MORLIE P.Wood Model for the Dynamic Behavior of Wood in Multiaxial Compression[J].Holz Roh-Werkst,2002,60:433-439.
    [16]OUDENE M,KHELIFA M.Elasto-plastic Constitutive Law for Wood Behavior under Compressive Loadings[J].Construction and Building Materials,2009,23:3359-3366.
    [17]MARTIN N,JRGEN H,BERNHARD O,et al.Compressive Behavior of Axially Loaded Spruce Wood under Large Deformations at Different Strain Rates[J].European Journal of Wood and Wood Products,2011,69(3):345-357.
    [18]姜风春,沙桂英,张晓欣,等.Hopkinson压杆实验技术的应用研究[J].哈尔滨工程大学学报,1999,20(4):56-60.JIANG Feng-chun,SHA Gui-ying,ZHANG Xiao-xin,et al.The Study of Hopkinson Compression Bar Experimental Technique[J].Journal of Harbin Engineering University,1999,20(4):56-60.
    [19]BREZNY R,GREEN D J.The Effect of Cell Size on the Mechanical Behavior of Cellular Materials[J].Acta Metall Mater,1990,38:2517-2526.
    [20]原璐,杨慧,黄庆国,等.芳纶纤维增强复合材料约束混凝土的动态压缩韧性试验研究[J].工业建筑,2012,42(9):116-119.YUAN Lu,YANG Hui,HUANG Qing-guo,et al.Study on Dynamic Compressive Toughness of Afrp Confined Concrete[J].Industrial Construction,2012,42(9):116-119.
    [21]GIBSON L J,ASHBY M F.Cellular Solids Structure and Properties[M].Pergamon Press,Oxford,1988.
    [22]ZHOU C,SMITH G D,DAI C.Characterizing Hydro-thermal Compression Behavior of Aspen Wood Strands[J].Holzforschung.2009,63(5):609-617.
    [23]BANHART J.Manufacture,Characterization and Application of Cellular Metals and Metal Foams[J].Progress in Materials Science,2001,46:559-632.
    [24]AKTAY L,Quasi-static Axial Crushing of Extruded Polystyrene Foam-filled Thin-walled Aluminum Tubes:Experimental and Numerical Analysis[J].Materials and Design,2006,27:556-565.
    [25]ZHIHUA W.Studies on the Dynamic Compressive Properties of Open-cell Aluminum Alloy¥oams[J].Scripta Materialia,2006,54:83-87.
    [26]SUNGSOO L,FRANCOIS B,NICOLAIE M,et al.Deformation Rate Effects on Failure Modes of Open-cell in Foams and Textile Cellular Materials[J].International Journal of Solids and Structures,2006,43:53-73.
    [27]GIBSON L J,ASHBY M F.Cellular Solids:Structure and Properties[M].Oxford:Pergamon Press,1997.
    [28]王二恒,虞吉林,王飞.泡沫铝材料准静态本构关系的理论和实验研究[J].力学学报,2004,36(6):674-676.WANG Er-heng,YU Ji-lin,WANG Fei.Theoretical and Experimental Study on the Quasistatic Constitutive Model of Aluminum Forms[J].Acta Mechanical,2004,36(6):674-676.
    [29]胡玲玲,黄小青,张红,等.泡沫铝材料的一维粘塑性本构关系[J].华南理工大学学报,2004,32(4):87-90.HU Ling-ling,HUANG Xiao-qing,ZHANG Hong.Matlab/Simulink Simulation Model of the Three Phase Induction Motor in Stator Winding ABC Frame[J].Journal of South China University of Technology(Natural Science Edition),2004,32(4):87-90.
    [30]AVALLE M,BELINGARDI G,IBBA A.Mechanical Models of Cellular Solids:Parameters Identification from Experimental Tests[J].International Journal of Impact Engineering,2007,34:23-27.
    [31]KWANG Y J,SEONG S C,MAHBUBUL B M.AConstitutive Model for Polyurethane Foam with Strain Rate Sensitivity[J].Journal of Mechanical Science and Technology,2012,26(7):2033-2038.
    [32]LIU Q,SUBHASH G.A Phenonmenological Constitutive Model for Foams under Large Deformation[J].Polymer Engineering and Science,2004,44(5):463-473.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700