水力喷射径向水平钻井水力参数设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydraulic parameter design for radial horizontal drilling by hydrajet
  • 作者:仲冠宇 ; 左罗 ; 蒋廷学 ; 王海涛 ; 孔令军
  • 英文作者:ZHONG Guanyu;ZUO Luo;JIANG Tingxue;WANG Haitao;KONG Lingjun;Research Institution of Petroleum Engineering,SINOPEC;
  • 关键词:径向水平井 ; 循环压耗 ; 水力参数优化设计 ; 钻井液黏度 ; 最优排量
  • 英文关键词:radial drilling;;circulating pressure loss;;hydraulic parameter design;;drilling fluid viscosity;;optimum pump rate
  • 中文刊名:DKYT
  • 英文刊名:Fault-Block Oil & Gas Field
  • 机构:中国石化石油工程技术研究院;
  • 出版日期:2018-09-25
  • 出版单位:断块油气田
  • 年:2018
  • 期:v.25;No.149
  • 基金:中国石油化工股份有限公司科技部十条龙项目“近断层页岩气非对称体积压裂关键技术研究”(P18052-6)
  • 语种:中文;
  • 页:DKYT201805022
  • 页数:5
  • CN:05
  • ISSN:41-1219/TE
  • 分类号:100-104
摘要
基于流体力学理论分析,建立了水力喷射径向水平钻井循环系统沿程压耗的计算模型。结合现场工艺过程,以最大水力钻头压降为优化目标,建立了水力喷射径向水平钻井水力参数的优化模型,提出了径向水平钻井水力参数的设计方法。结合具体工程实例,验证了计算模型及设计方法的正确性,分析了各参数的敏感性。结果表明,最优排量及最大钻头压降随着连续油管、高压软管的内径和最大泵压允值的增加而增大,而随着钻井液黏度的增大而减小。该方法为径向水平钻井的水力参数设计提供了理论依据。
        Based on the theoretical analysis of fluid mechanics, the calculation model of pressure loss of circulating system for radial horizontal drilling by hydrajet was established. Combined with field technology, the optimization model of the hydraulic parameters of hydraulic jetting radial horizontal drilling was established and the design method of hydraulic parameters of radial horizontal drilling was proposed to optimize the pressure drop of the maximum hydraulic bit. Combined with specific project case, the validity of calculation model and design method was verified and the sensitivity of each parameter was analyzed. The results reveal that the optimal pump rate and the pressure drop of the maximum bit increase with the increase of the inner diameters of coiled tubing and high-pressure hose as well as the permissible value of the maximum pump pressure, but decrease with the increase of the viscosity of drilling fluids. This method provides a theoretical basis for the design of hydraulic parameters of radial horizontal drilling.
引文
[1]张义,周卫东,王瑞和,等.煤层水力自旋转射流钻头设计[J].天然气工业,2008,28(3):61-63.
    [2]毕刚,马东军,李根生,等.水力喷射侧钻径向水平井眼延伸能力[J].断块油气田,2016,23(5):643-647.
    [3]周爱照,王瑞和,周卫东,等.径向水平井旋转磨料射流套管开窗技术研究[J].钻采工艺,2012,35(4):13-15.
    [4]周卫东,师伟,李罗鹏.径向水平钻孔技术研究进展[J].石油矿场机械,2012,41(4):1-6.
    [5]管志川,陈庭根.钻井工程理论与技术[M].东营:中国石油大学出版社,2005:48-57.
    [6] DICKINSON W,ANDERSON R R,DICKINSON R W. A secondgeneration horizontal drilling system[R]. SPE 14804,1986.
    [7]刘康乐,魏艳,李莎,等.旋转磨料射流套管开窗预测模型及应用[J].断块油气田,2017,24(4):578-582.
    [8] BUSET P,RIIBER M,EEK A. Jet drilling tool:cost-effective lateral drilling technology for enhanced oil recovery[R]. SPE 68504,2001.
    [9] ALLARIE,MICHAEL M M,GRANT D M,et al. Method and apparatus for radially drilling through well casing and formation:US6167968B1[P]. 2001-01-02.
    [10]付宣,李根生,黄中伟,等.煤层气径向水平井压裂室内试验与产能数值分析[J].石油钻探技术,2016,44(2):99-105.
    [11]李春玉.油藏-井筒耦合的微小井眼径向水平井流动规律及产能分析[J].钻采工艺,2014,37(2):44-47.
    [12]吴秀田,田树宝,张鹏,等.水力射流深穿透射孔产能分析及参数优化[J].石油钻采工艺,2010,32(5):74-78.
    [13]马东军,李根生,黄中伟,等.连续油管侧钻径向水平井循环系统压耗计算模型[J].石油勘探与开发,2012,39(4):494-499.
    [14] WANG B,LI G,HUANG Z,et al. Hydraulics calculations and field application of radial jet drilling[J]. SPE Drilling&Completion,2016,31(1):71-81.
    [15] SRINIVASAN P S,NANDAPURKAR S S,HOLLAND F A. Friction factors for coils[J]. Trans. Inst. Chem. Eng.,1970,48:156-161.
    [16] ITO H. Friction factors for turbulent flow in curved pipes[J]. Journal of Basic Engineering,1959,81(2):123-134.
    [17] KAMEL A,HOSNY A,SHAQLAIH A S. Friction pressure losses of fluids flowing in circular conduits[C]. Houston:Offshore Technology Conference,2012.
    [18]袁恩熙.工程流体力学[M].北京:石油工业出版社,1986:66-73.
    [19] SINGHAL N, SHAH S N, JAIN S. Friction pressure correlations for Newtonian and non-Newtonian fluids in concentric annuli[R]. SPE94280,2005.
    [20] CHEN N H. An explicit equation for friction factor in pipe[J]. Industrial&Engineering Chemistry Fundamentals,1979,18(18):296-297.
    [21] HACIISLAMOGLU M. Practical pressure loss predictions in realistic annular geometries[J]. IEEE Transactions on Industry Applications,1994,41(1):144-154.
    [22] ZHOU Y,SHAH S N. New friction factor correlations for non-Newtonian fluid flow in coiled tubing[J]. SPE Drilling&Completion,2006,21(1):68-76.
    [23]陈卓如.工程流体力学[M].北京:高等教育出版社,2013:21-35.
    [24] SUMMERS D A. Water jet cutting related to jet&rock properties[C]//American Rock Mechanics Association. Proceedings of the 14th Symposium On Rock Mechanics. Pennsylvania,1972.
    [25] LU Y,HUANG F,LIU X,et al. On the failure pattern of sandstone impacted by high-velocity water jet[J]. International Journal of Impact Engineering,2015,76:67-74.
    [26]倪红坚,王瑞和,葛洪魁.高压水射流破岩的数值模拟分析[J].岩石力学与工程学报,2004,23(4):550-554.
    [27] GRYC R,HLAV魣C L M,MIKOL魣譒M, et al. Correlation of pure and abrasive water jet cutting of rocks[J]. I nternational Journal of Rock Mechanics&Mining Sciences,2014,65(1):149-152.
    [28] SINGH M M,HUCK P J. Correlation of rock properties to damage effected by water jet[C]//American Rock Mechanics Association.Proceeding of the 12th Symposium On Rock Mechanics. Missouri,1970.
    [29] DANTZIG G B,SPRINGER M N T. Linear programming 2:theory and extensions[J]. Practical Optimization Methods,2003,20(2):293-377.
    [30] NI H J,SONG W Q,WANG R H,et al. Coupling model for carbon dioxide wellbore flow and heat transfer in coiled tubing drilling[J].Journal of Natural Gas Science and Engineering,2016,30:414-420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700