新型空气-水双热源复合热泵系统性能和除霜实验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:System performance and defrosting test of new air-water double source composite heat pump system
  • 作者:徐俊芳 ; 赵耀华 ; 王皆腾 ; 赵会刚 ; 梁元元
  • 英文作者:XU Junfang;ZHAO Yaohua;WANG Jieteng;ZHAO Huigang;LIANG Yuanyuan;College of Architecture and Civil Engineering,Beijing University of Technology;Beijing Science and Technology Institute of Housing and Urban-Rural Development;
  • 关键词:热泵 ; 双热源 ; 再生能源 ; 系统性能 ; 优化设计 ; 除霜 ; 实验验证
  • 英文关键词:heat pump;;double-heat sources;;renewable energy;;system performance;;optimal design;;defrosting;;experimental validation
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:北京工业大学建筑工程学院;北京市住房和城乡建设科学技术研究所;
  • 出版日期:2017-07-28 18:53
  • 出版单位:化工学报
  • 年:2017
  • 期:v.68
  • 基金:国家科技支撑计划项目(2012BAA13B02)~~
  • 语种:中文;
  • 页:HGSZ201711034
  • 页数:8
  • CN:11
  • ISSN:11-1946/TQ
  • 分类号:317-324
摘要
针对低温环境条件下热泵逆循环除霜存在的诸多问题,提出了一套具备预热除霜功能的新型空气-水双热源复合热泵系统(new air-water double source composite heat pump system,AWDSHPS-N),通过阀门切换和低温水源侧水泵的启停控制可直接进入除霜模式,除霜过程中可保证制热的连续性,每次除霜时长不超过5 min。利用恒温恒湿环境仓模拟室外环境条件,可调控水温的低温水箱模拟太阳能等低温热源搭建AWDSHPS-N实验台,对不同测试工况下,单空气源制热模式(air source heating mode,ASHM)、单水源制热模式(water source heating mode,WSHM)、空气-水双热源制热模式(air-water source heating mode,AWSHM)3种制热模式将水从18℃加热至51℃的系统性能系数(coefficient of performance,COP)进行了实验,结果表明:AWSHM的COP比ASHM提高了6.1%~20.5%;当环境温度和低温水源温度均高于15℃时,系统COP高低顺序为AWSHM、ASHM和WSHM。
        In order to improve many disadvantages that the heat pump system has when it uses the reverse-cycle defrosting method in the low temperature environment,a new air-water double source composite heat pump system(AWDSHPS-N) was presented. This system has a new preheating and defrosting function. AWDSHPS-N has defrosted for 5 min and has 5 different defrosting ways,such as the condenser outlet refrigerant recooling defrosting,the low temperature-hot water defrosting,and so on. It can be put into different modes by changing some relevant valves or starting and stopping the pump of the low temperature water. In this way,the heat output power of AWDSHPS-N may be reduced dramatically,but the system can produce heating continuously. A test-bed including constant temperature and humidity environment storehouse and a low temperature water tank were set up to get operating data for coefficient of performance(COP) of AWDSHPS-N. The environment storehouse imitates the change in outdoor environment by keeping the temperature and the humidity at a certain level constantly,and the low temperature water tank with two electric heating bars can be thought as a low temperature heating source of a solar energy system or a waste heat system. By heating the water from 18℃ to 51℃,the COP of AWDSHPS-N was tested and analyzed in air source heating mode(ASHM),water source heating mode(ASHM),water source heating mode(WSHM) and air-water double source heating mode(AWSHM),respectively. By calculating,the COP of AWSHM is 6.1%—20.5% higher than ASHM. When the ambient temperature and the low temperature water are both above 15℃,the COP of AWSHM is the best one,and the COP of WSHM is the last one among these three heating modes.
引文
[1]北京市住房和城乡建设委员会,北京市发展和改革委员会.北京市“十三五”时期民用建筑节能发展规划[Z].北京,2016,10:13.Beijing Municipal Commission of Housing and Urban-Rural Development,Beijing Municipal Commission of Development and Reform.Beijing“the 13th Five-Year”period development planning of civil building energy-saving[Z].Beijing,2016,10:13.
    [2]KELLY N J,COCKROFT J.Analysis of retrofit air source heat pump performance:results from detailed simulations and comparison to field trial data[J].Energy and Buildings,2011,43(1):239-245.
    [3]XU J F,WANG J T,ZHAO Y H,et al.Analysis on operation condition of a village air source heat pump heating system project in Beijing[C]//2015 4th International Conference on Energy and Environmental Protection.Shenzhen,2015:1141-1147.
    [4]BUGBEE J E,SWIFT J R.Cold climate ductless heat pump performance[J].Energy Engineering,2013,110(8):47-57.
    [5]LI Y,FU L,ZHANG S,et al.A new type of district heating system based on distributed absorption heat pumps[J].Energy,2009,36(7):4570-4576.
    [6]王沣浩,王志华,郑煜鑫,等.低温环境下空气源热泵的研究现状及展望[J].制冷学报,2013,34(5):47-54.WANG F H,WANG Z H,ZHENG Y X,et al.Research progress and prospect of air source heat pump in low temperature environment[J].Journal of Refrigeration,2013,34(5):47-54.
    [7]俞丽华,马国远,徐荣保.低温空气源热泵的现状与发展[J].建筑节能,2007,35(3):54-57.YU L H,MA G Y,XU R B.Current status and development of low temperature air-source heat pump[J].Building Energy Efficiency,2007,35(3):54-57.
    [8]徐俊芳,赵会刚,刘震,等.太阳能光热系统应用状况调查研究[J].建筑节能,2015,43(10):36-39.XU J F,ZHAO H G,LIU Z,et al.Investigation and research on the application of solar energy system[J].Building Energy Efficiency,2015,43(10):36-39.
    [9]徐俊芳,赵会刚,李楠,等.空气-水双热源复合热泵工程应用方案探讨[J].建筑节能,2016,44(7):33-36.XU J F,ZHAO H G,LI N.et al.Engineering application schemes of air-water dual-source compound heat pump[J].Building Energy Efficiency,2016,44(7):33-36.
    [10]KAMIL K,NURBAY G,TEOMAN A.Solar-assisted heat pump and energy storage for domestic heating in Turkey[J].Energy Conversion and Management,1993,34(5):335-346.
    [11]KAMIL K.Performance of solar-assisted heat-pump systems[J].Applied Energy,1995,51(2):93-109.
    [12]KAMIL K.Experimental and theoretical investigation of a solar heating system with heat pump[J].Renewable Energy,2000,21(l):79-102.
    [13]LI H,YANG H X.Study on performance of solar assisted air source heat pump systems for hot water production in Hong Kong[J].Applied Energy,2010,87(9):2818-2825.
    [14]PANARAS G,MATHIOULAKIS E,BELESSIOTIS V.Investigation of the performance of a combined solar thermal heat pump hot water system[J].Solar Energy,2013,93:169-182.
    [15]KUANG Y H,WANG R Z,YU L Q.Experimental study on solar assisted heat pump system for heat supply[J].Energy Conversion&Management,2003,44(7):1089-1098.
    [16]王强,杨静,陈明九,等.太阳能空气源热泵复合系统实验研究[J].山东建筑大学学报,2012,27(2):212-215.WANG Q,YANG J,CHEN M J,et al.Experimental study on compound system of solar and air source heat pump[J].Journal of Shandong Jianzhu University,2012,27(2):212-215.
    [17]张迎迎,王强,回晓洋,等.太阳能-空气源复合热泵性能研究[J].制冷与空调,2015,15(6):15-18.ZHANG Y Y,WANG Q,HUI X Y,et al.Performance study on solar-air source heat pump[J].Refrigeration and Air-Conditioning,2015,15(6):15-18.
    [18]刘寅,周光辉,李安桂,等.太阳能辅助空气源热泵空调低温特性研究[J].低温与超导,2009,37(10):73-75.LIU Y,ZHOU G H,LI A G,et al.Performance research of solar assistant air source heat pump in low temperature condition[J].Cryogenics&Superconductivity,2009,37(10):73-75.
    [19]LIU Y,MA J,ZHOU G H,et al.Performance of a solar air composite heat source heat pump system[J].Renewable Energy,2015,87:1053-1058.
    [20]王岗,全贞花,赵耀华,等.太阳能-空气复合热源热泵热水系统[J].化工学报,2014,65(3):1033-1039.WANG G,QUAN Z H,ZHAO Y H,et al.Solar-air composite heat source heat pump hot water system[J].CIESC Journal,2014,65(3):1033-1039.
    [21]WANG G,QUAN Z H,ZHAO Y H,et al.Experimental study on a novel PV/T air dual-heat-source composite heat pump hot water system[J].Energy and Buildings,2015,108:175-184.
    [22]徐鹏,全贞花,赵耀华,等.新型太阳能光伏-热泵复合建筑供能系统及其性能实验研究[J].建筑科学,2015,31(6):99-105.XU P,QUAN Z H,ZHAO Y H,et al.New-type solar photovoltaic and heat pump combined building energy supply system and experimental study of its performance[J].Building Science,2015,31(6):99-105.
    [23]LI S S,LI S H,ZHANG X S.Comparison analysis of different refrigerants in solar-air hybrid heat source heat pump water heater[J].International Journal of Refrigeration,2015,57:138-146.
    [24]LIU Z Q,LI X L,WANG H Q,et al.Performance comparison of air source heat pump with R407C and R22 under frosting and defrosting[J].Energy Conversion and Management,2008,49(2):232-239.
    [25]SONG M J,XIA L,DENG S M.A modeling study on alleviating uneven defrosting for a vertical three-circuit outdoor coil in an air source heat pump unit during reverse cycle defrosting[J].Applied Energy,2016,161(1):268-278.
    [26]KIM J,CHOI H J,KIM K C.A combined dual hot-gas bypass defrosting method with accumulator heater for an air-to-air heat pump in cold region[J].Applied Energy,2015,147:344-352.
    [27]ABDEL-WAHED R M,HIFNI M A,SHERIF S A.Hot water defrosting of a horizontal flat plate cooling surface[J].International Journal of Refrigeration,1983,6(3):152-154.
    [28]AMEEN F R,CONEY J E R,SHEPPARD C G W.Experimental study of warm-air defrosting of heat-pump evaporator[J].International Journal of Refrigeration,1993,16(1):13-18.
    [29]BAXTER V D,MOYERS J C.Field-measured cycling frost and defrosting losses for a high efficiency air source heat pump[J].ASHRAE Trans.,1985,91(2B-2):537-554.
    [30]QU M L,XIA L,DENG S M,et al.Improved indoor thermal comfort during defrost with a novel reverse-cycle defrosting method for air source heat pumps[J].Building&Environment,2010,45(11):2354-2361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700