考虑潮位变动的淹没水平板防波堤设置方案
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Configuration of Submerged Horizontal Plate Breakwater Considering Tidal-Level Variation
  • 作者:高喜峰 ; 王洪树 ; 贺铭 ; 徐万海
  • 英文作者:Gao Xifeng;Wang Hongshu;He Ming;Xu Wanhai;Stake Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University;
  • 关键词:淹没水平板 ; 潮位 ; 波浪透射系数 ; 波浪力 ; 薄壁结构 ; 光滑粒子流体动力学
  • 英文关键词:submerged horizontal plate;;tidal-level;;wave transmission coefficient;;wave force;;thin-wall structure;;smoothed particle hydrodynamics(SPH)
  • 中文刊名:TJDX
  • 英文刊名:Journal of Tianjin University(Science and Technology)
  • 机构:天津大学水利工程仿真与安全国家重点实验室;
  • 出版日期:2019-02-26
  • 出版单位:天津大学学报(自然科学与工程技术版)
  • 年:2019
  • 期:v.52;No.339
  • 基金:国家自然科学基金资助项目(51679167,51709201);; 中国博士后科学基金资助项目(2017M621074)~~
  • 语种:中文;
  • 页:TJDX201905011
  • 页数:10
  • CN:05
  • ISSN:12-1127/N
  • 分类号:85-94
摘要
淹没水平板借助上部波浪破碎、端部涡旋脱落、底部脉动回流等机理能够较好地抵御波浪入侵,是一种富有开发价值的透空型防波堤.然而淹没水平板多采用桩柱支撑,结构高程不随潮位的变化而改变.在潮差较大的海域,低潮位时水平板可能位于水面以上,而高潮位时其浸没深度又可能过大,两种情况下水平板防波堤均不能有效抵御波浪.为此,本文探讨如何设置双层水平板防波堤来削弱潮位变动对消浪性能的不利影响.研究基于光滑粒子流体动力学(SPH)方法进行,首先建立了模拟波浪与淹没水平板相互作用的二维数值波浪水槽,接着以文献中记录的物理模型实验为目标,重现了孤立波和规则波与单层淹没水平板的相互作用过程.数值计算得到的波面形态、结构波浪力、基倍频波浪透射系数均与实测结果吻合较好.随后应用验证过的数学模型,对单层水平板和两种形式的双层水平板的消浪性能进行了比较.一方面展现出在变潮位环境下采用双层水平板的必要性,另一方面从所提出的两种双层水平板设置方案中确定出较优的形式.进一步地,综合对波浪透射系数和水平板垂向波浪力的分析,得出双层水平板防波堤的最佳板间距.研究结果表明,在高低潮位下各设置一层水平板所组合而成的双层水平板防波堤能够有效克服潮位变动对消浪性能的不利影响,且双层水平板的最佳板间距宜与潮差相等.
        On the help of the wave breaking above,the vortex shedding at the ends,and the pulsating flow beneath,a submerged horizontal plate attenuates incident water waves passing over the plate and becomes an exploitable open-type breakwater. However,restrained by piles,the elevation of the plate remains unchanged during tidallevel fluctuations. In case of a large tidal range, the plate may be exposed above the low-tidal water surface,but at high tide,the submergence of the plate can be large. Both situations are unfavorable for the wave attenuation performance of the submerged horizontal plate breakwater. In this regard,the method of designing a twin-plate system to weaken the adverse effect of tidal-level variation is discussed. Based on the smoothed particle hydrodynamics(SPH)method, a 2 D numerical wave tank(NWT) was first built. Following available experiments in the literature,the NWT was used to reproduce solitary wave as well as regular wave interaction with single submerged horizontal plates.The wave profiles,wave forces,and fundamental-and high-order wave transmission coefficients obtained by numerical calculation agree well with the measured results. The validated SPH model was applied to compare the wave transmission coefficients between a single-plate and two twin-plate systems with different configurations. The necessity of using a twin-plate system in the tidal-level varying environment was confirmed. Additionally,the superior con-figuration out of the two proposed twin-plate systems was determined. Furthermore,the optimal spacing between the twin-plates was determined by comprehensive analysis of the wave transmission coefficient and vertical wave force.The results indicate that a twin-plate system with one plate below the low water level and the other between the low and high water levels can effectively cope with the tidal-level variation. The vertical spacing between the twin-plates is recommended to be equal to the tidal range.
引文
[1]Heins A E.Water waves over a channel of finite depth with a submerged plane barrier[J].Canadian Journal of Mathematics,1950,2:210-222.
    [2]Siew P F,Hurley D G.Long surface waves incident on a submerged horizontal plate[J].Journal of Fluid Mechanics,1977,83(1):141-151.
    [3]Cho I H,Kim M H.Interactions of a horizontal flexible membrane with oblique incident waves[J].Journal of Fluid Mechanics,1998,367:139-161.
    [4]Liu Y,Li Y C.An alternative analytical solution for water-wave motion over a submerged horizontal porous plate[J].Journal of Engineering Mathematics,2011,69(4):385-400.
    [5]Dong J,Wang B,Zhao X,et al.Wave forces exerted on a submerged horizontal plate over an uneven bottom[J].Journal of Engineering Mechanics,2018,144(6):04018030.
    [6]Verduzco-Zapata M G,Ocampo-Torres F J,Mendoza E,et al.Optimal submergence of horizontal plates for maximum wave energy dissipation[J].Ocean Engineering,2017,142:78-86.
    [7]Liu C,Huang Z,Chen W.A numerical study of a submerged horizontal heaving plate as a breakwater[J].Journal of Coastal Research,2017,33(4):917-930.
    [8]Liu C,Huang Z,Tan S K.Nonlinear scattering of nonbreaking waves by a submerged horizontal plate:Experiments and simulations[J].Ocean Engineering,2009,36(17/18):1332-1345.
    [9]Lalli F,Bruschi A,Liberti L,et al.Analysis of linear and nonlinear features of a flat plate breakwater with the boundary element method[J].Journal of Fluids and Structures,2012,32:146-158.
    [10]Poupardin A,Perret G,Pinon G,et al.Vortex kinematic around a submerged plate under water waves.Part I:Experimental analysis[J].European Journal of Mechanics B/Fluids,2012,34:47-55.
    [11]Jin H,Liu Y,He S-Y,et al.Numerical study on the wave dissipating performance of a submerged horizontal plate breakwater using OpenFOAM[C]//Proceedings of the Eleventh(2014)Pacific/Asia Offshore Mechanics Symposium.Shanghai,China,2014:307-311.
    [12]Qi P,Hou Y-J.Numerical wave flume study on wave motion around submerged plates[J].China Ocean Engineering,2003,17(3):397-406.
    [13]Patarapanich M,Cheong H F.Reflection and transmission characteristics of regular and random waves from a submerged horizontal plate[J].Coastal Engineering,1989,13(2):161-182.
    [14]Gu Q,Huang G,Zhang N,et al.Experimental study on the wave loads of twin-plate breakwater under oblique waves[J].Acta Oceanologica Sinica,2016,35(12):100-109.
    [15]Gu Q,Huang G,Zhang N,et al.Wave-dissipating performance of twin-plate breakwater under oblique random waves[J].International Journal of Offshore and Polar Engineering,2017,27(2):184-192.
    [16]Fang Z,Xiao L,Kou Y,et al.Experimental study of the wave-dissipating performance of a four-layer horizontal porous-plate breakwater[J].Ocean Engineering,2018,151:222-233.
    [17]Ming F R,Sun P N,Zhang A M.Numerical investigation of rising bubbles bursting at a free surface through a multiphase SPH model[J].Meccanica,2017,52(11):2665-2684.
    [18]Khayyer A,Gotoh H.On particle-based simulation of a dam break over a wet bed[J].Journal of Hydraulic Research,2010,48(2):238-249.
    [19]Khayyer A,Gotoh H,Shao S.Corrected incompressible SPH method for accurate water-surface tracking in breaking waves[J].Coastal Engineering,2008,55(3):236-250.
    [20]Ming F R,Zhang A M,Xue Y Z,et al.Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions[J].Ocean Engineering,2016,117:359-382.
    [21]Ren B,He M,Li Y,et al.Application of smoothed particle hydrodynamics for modeling the wave-moored floating breakwater interaction[J].Applied Ocean Research,2017,67:277-290.
    [22]Zheng X,LüX,Ma Q,et al.An improved solid boundary treatment for wave-float interactions using ISPH method[J].International Journal of Naval Architecture and Ocean Engineering,2018,10(3):329-347.
    [23]Gao X,He M,Xu W,et al.Hydroelastic analysis of a submerged horizontal plate using a coupled SPH-FEMmodel[C]//Proceedings of the ASME 2018 37th International Conference on Ocean,Offshore and Arctic Engineering.Madrid,Spain,2018.
    [24]Li Y,He M,Ren B,et al.Numerical simulation of wave interaction with a hinged multi-module floating structure[C]//Proceedings of the ASME 2017 36th International Conference on Ocean,Offshore and Arctic Engineering.Trondheim,Norway,2017.
    [25]Shi Y,Li S,Chen H,et al.Improved SPH simulation of spilled oil contained by flexible floating boom under wave-current coupling condition[J].Journal of Fluids and Structures,2018,76:272-300.
    [26]Meringolo D D,Aristodemo F,Veltri P.SPH numerical modeling of wave-perforated breakwater interaction[J].Coastal Engineering,2015,101:48-68.
    [27]Ren X-F,Sun Z-C,Wang X-G,et al.SPH numerical modeling for the wave-thin structure interaction[J].China Ocean Engineering,2018,32(2):157-168.
    [28]Zhang A M,Sun P N,Ming F R,et al.Smoothed particle hydrodynamics and its applications in fluidstructure interactions[J].Journal of Hydrodynamics,2017,29(2):187-216.
    [29]Monaghan J J.Simulating free surface flows with SPH[J].Journal of Computational Physics,1994,110(2):399-406.
    [30]Ren B,He M,Dong P,et al.Nonlinear simulations of wave-induced motions of a freely floating body using WCSPH method[J].Applied Ocean Research,2015,50:1-12.
    [31]Lo H Y,Liu P L F.Solitary waves incident on a submerged horizontal plate[J].Journal of Waterway,Port,Coastal,and Ocean Engineering,2014,140(3):04014009.
    [32]Goring D G.Tsunamis:The propagation of long waves onto a shelf[D].Pasadena,California:Division of Engineering and Applied Science,California Institute of Technology,1978.
    [33]Hirakuchi H,Kajima R,Kawaguchi T.Application of a piston-type absorbing wavemaker to irregular wave experiments[J].Coastal Engineering in Japan,1990,33(1):11-24.
    [34]Grue J.Nonlinear water waves at a submerged obstacle or bottom topography[J].Journal of Fluid Mechanics,1992,244:455-476.
    [35]胡方西,谷国传.中国沿岸海域月平均潮差变化规律[J].海洋与湖沼,1989,20(5):401-411.Hu Fangxi,Gu Guochuan.Seasonal changes of the mean tidal range along the Chinese coasts[J].Oceanologia et Limnologia Sinica,1989,20(5):401-411(in Chinese).
    [36]Wen H,Ren B.A non-reflective spectral wave maker for SPH modeling of nonlinear wave motion[J].Wave Motion,2018,79:112-128.
    [37]He M,Gao X F,Xu W H.Numerical simulation of wave-current interaction using the SPH method[J].Journal of Hydrodynamics,2018,30(3):535-538.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700