新疆博斯腾湖流域气候变化对参考作物蒸散发影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Climate Change on Reference Crop Evapotranspiration in Bosten Lake Basin,Xinjiang
  • 作者:杨丽 ; 林鹏飞 ; 刘苗苗 ; 王水献
  • 英文作者:YANG Li;LIN Pengfei;LIU Miaomiao;WANG Shuixian;Key Laboratory of Western China's Environmental Systems(Ministry of Education), College of Earth and Environmental Sciences,Lanzhou University;
  • 关键词:参考作物蒸散发 ; 气候变化 ; Penman-Monteith公式 ; 博斯腾湖流域
  • 英文关键词:bosten lake basin;;climate change;;reference crop evapotranspiration;;Penman Monteith formula
  • 中文刊名:GGPS
  • 英文刊名:Journal of Irrigation and Drainage
  • 机构:兰州大学资源环境西部教育部重点实验室;
  • 出版日期:2018-06-15
  • 出版单位:灌溉排水学报
  • 年:2018
  • 期:v.37
  • 基金:兰州大学中央高校基本科研业务费专项资金项目(lzujbky-2014-207);; 公益性行业(农业)科研专项(201203006)
  • 语种:中文;
  • 页:GGPS2018S1019
  • 页数:7
  • CN:S1
  • ISSN:41-1337/S
  • 分类号:82-88
摘要
【目的】制定合理的农业灌溉制度规划以及合理利用干旱区水资源。【方法】基于博斯腾湖流域1961—2013年4个气象站点的逐日气象数据,采用FAO-56 Penman-Monteith公式估算博斯腾湖流域参考作物蒸散发(ET0),应用气候倾向率和Mann-Kendall秩次相关法开展了研究区1961—2013年的参考作物蒸散发及其气象因子进行了趋势分析和显著性检验的研究,应用SPSS分析软件开展了ET0与气象因子的相关性分析研究,定性分析出各个气象因素对ET0的贡献。【结果】(1)博斯腾湖流域山区年均ET0变化倾向率为-0.379 3,呈现轻微减少趋势;平原区年均ET0变化倾向率为-6.594 5,呈现极显著减少趋势。山区春夏季节呈减少趋势,秋冬则呈不明显上升趋势;平原区各季节均呈显著减少趋势,夏季最明显。(2)研究区风速和最高气温是影响ET0变化的最主要气象参数,且在冬季风速为最敏感参数。(3)焉耆站与库尔勒站风速对年以及四季ET0变化均为负贡献,年贡献分别为-21.36%、-26.97%,是导致ET0下降的主导因子;巴音布鲁克站与巴仑台站最高于最低气温分别对年ET0变化为最大正贡献,分别为15.07%与23.72%。【结论】博斯腾湖流域ET0的下降变化将会减少农业灌溉需水量,且有助于改善脆弱的生态环境,缓解流域干旱气候,敏感性以及贡献率分析有助于人们认识气候变化下流域的水循环特征。
        【Objective】Make reasonable agriculture irrigation plan and make reasonable use of water resources in arid areas.【Method】Based on characters in four weather stations from 1961 to 2013 of daily meteorological data,the FAO-56 Penman Monteith-formula estimating characters in nearly 50 years of reference crop evaporation(ET0), application of climate tendency rate and Mann Kendall rank correlation method were carried out in the study area in 1961—2013 to analysis reference crop evaporation and meteorological factor in the trend analysis and the test of significance of the research. The correlation analysis between ET0 and meteorological factors was carried out by using SPSS analysis software, and the contribution of each meteorological factor to ET0 was qualitatively analyzed.【Result】The average annual ET0 change tendency rate in the mountainous areas of Bosten Lake basin was-0.379 3, showing a slight decrease trend; The average annual ET0 change trend rate of the plain area was-6.594 5, showing a very significant decrease trend. The spring and summer seasons in mountainous areas showed a decreasing trend, while the autumn and winter showed no obvious rising trend. There was a significant decrease in each season in plain area, especially in summer. Wind speed and maximum temperature in the study area were the most important meteorological parameters influencing ET0 changes, and wind speed was the most sensitive parameter in winter. Wind speed of Yanqi station and korla station both contribute negatively to the annual and seasonal changes of ET0, with annual contributions of-21.36% and-26.97% respectively, which were the leading factors leading to the decrease of ET0. The highest and lowest temperatures at Bayinbuluke station and Baluntai station respectively contributed the most to the annual ET0 change, which was 15.07% and 23.72% respectively.【Conclusion】The characters of watershed ET0 decreased change will reduce the agriculture irrigation water requirement, and help to improve the fragile ecological environment, alleviate river basin arid climate, sensitivity analysis, as well as the contribution helps people to know climate change under the basin water cycle characteristics.
引文
[1] JABLOUN M, SAHLI A. Evaluation of fao-56 methodology for estimating reference evapotranspiration using limited climatic data:application to Tunisia[J]. Agricultural Water Management, 2008, 95:707-715.
    [2] FIELD C B, BARROS V R, MACH K, et al. Climate change 2014:impacts, adaptation, and vulnerability[J]. Contribution of Working Group II to the Third Assessment Report, 2014, 19(2):81-111.
    [3] CREED I F, HWANG T, LUTZ B, et al. Climate warming causes intensification of the hydrological cycle, resulting in changes to the vernal and autumnal windows in a northern temperate forest[J]. Hydrological Processes, 2015, 29(16):3 519-3 534.
    [4] IRMAK S, KABENGE I, SKAGGS K E, et al. Trend and magnitude of changes in climate variables and reference evapotranspiration over 116-yr period in the Platte River Basin, central Nebraska–USA[J]. Journal of Hydrology, 2012, 420:228-244.
    [5] TAO X E, CHEN H, XU C Y, et al. Analysis and prediction of reference evapotranspiration with climate change in Xiangjiang River Basin, China[J]. Water Science and Engineering, 2015, 8(4):273-281.
    [6]董旭光,邱粲,王静.近50年来山东省参考作物蒸散量变化及定量化成因[J].生态环境学报,2016,25(7):1 098-1 105.
    [7] LANDERAS G, BEKOE E, AMPOFO J, et al. New alternatives for reference evapotranspiration estimation in West Africa using limited weather data and ancillary data supply strategies[J]. Theoretical and Applied Climatology, 2018, 132(3/4):701-716.
    [8] SADEGHI S H, PETERS T, SHAFII B, et al. Continuous variation of wind drift and evaporation losses under a linear move irrigation system[J]. Agricultural water management, 2017, 182:39-54.
    [9] ANAPALLI S S, AHUJA L R, GOWDA P H, et al. Simulation of crop evapotranspiration and crop coefficients with data in weighing lysimeters[J]. Agricultural Water Management, 2016, 177:274-283.
    [10] TABARI H, NIKBAKHT J, TALAEE H P. Identification of trend in reference evapotranspiration series with serial dependence in Iran[J]. Water Resources Management, 2012, 26(8):2 219-2 232.
    [11]赵璐,梁川,崔宁博,等.不同ET0计算方法在川中丘陵地区的比较及改进[J].农业工程学报,2012,28(24):92-98.
    [12]刘钰,蔡林根.参照腾发量的新定义及计算方法对比[J].水利学报,1997(6):27-33.
    [13]李为虎,杨永红.参考作物蒸发蒸腾量计算方法在拉萨的适用性对比分析[J].安徽农业科学,2009,37(34):16 745-16 748.
    [14] CROITORU A E, PITICAR A, DRAGOTA C S, et al. Recent changes in reference evapotranspiration in Romania[J]. Global&Planetary Change, 2013,111:127-136.
    [15] ELNESR M N, ALAZBA A A. Effect of Climate Change on Spatio-Temporal Variability and Trends of Evapotranspiration, and Its Impact on Water Resources Management in The Kingdom of Saudi Arabia[M]. Climate Change-Realities, Impacts Over Ice Cap, Sea Level and Risks, 2013:273-296.
    [16] PALUMBO A D, VITALE D, CAMPI P, et al. Time trend in reference evapotranspiration:analysis of a long series of agro meteorological measurements in Southern Italy[J]. Irrigation&Drainage Systems, 2011, 25(4):395-411.
    [17] TABARI H, AEINI A, TALAEE P H, et al. Spatial distribution and temporal variation of reference evapotranspiration in arid and semi-arid regions of Iran[J]. Hydrological Processes, 2012, 26(4):500-512.
    [18] BANDYOPADHYAY A, BHADRA A, RAGHUWANSHI N S, et al. Temporal trends in estimates of reference evapotranspiration over India[J]. Journal of Hydrologic Engineering, 2009, 14(5):508-515.
    [19] RODERICK M L, HOBBINS M T, FARQUHAR G D. Pan Evaporation Trends and the Terrestrial Water Balance. II. Energy Balance and Interpretation[J]. Geography Compass, 2009, 3(2):761-780.
    [20] RODERICK M L, HOBBINS M T, FARQUHAR G D. Pan Evaporation Trends and the Terrestrial Water Balance. I. Principles and Observations[J]. Geography Compass, 2009, 3(2):746-760.
    [21] POCKLEY P. The evaporation paradox[J]. Australasian Science, 2009, 30(10):12-13.
    [22] TABARI H, MAROFI S, AEINI A, et al. Trend analysis of reference evapotranspiration in the western half of Iran[J]. Agricultural and Forest Meteorology, 2011, 151(2):128-136.
    [23] NOURI M, HOMAEE M, BANNAYAN M. Quantitative Trend, Sensitivity and Contribution Analyses of Reference Evapotranspiration in some Arid Environments under Climate Change[J]. Water Resources Management, 2017, 31(7):2 207-2 224.
    [24] YE X, LI X, LIU J, et al. Variation of reference evapotranspiration and its contributing climatic factors in the Poyang lake catchment, China[J]. Hydrological Processes, 2014, 28(25):6 151-6 162.
    [25] ZHAO L, XIA J, SOBKOWIAK L, et al. Climatic characteristics of reference evapotranspiration in the Hai river basin and their attribution[J]. Water,2014, 6(6):1 482-1 499.
    [26] SHI Z, XU L, YANG X, et al. Trends in reference evapotranspiration and its attribution over the past 50 years in the Loess Plateau, China:implications for ecological projects and agricultural production[J]. Stochastic Environmental Research&Risk Assessment, 2017, 31(1):257-273.
    [27] PAYERO J O, TARKALSON D D, IRMAK S, et al. Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield,water use efficiency, and dry matter production in a semiarid climate[J]. Agricultural Water Management, 2008, 95(8):895-908.
    [28] PENMAN H L. Natural evaporation from open water, hare soil and grass[J]. Proceedings of the Royal Society of London, 1948, 193(1 032):120.
    [29] DONOHUE R J, MCVICAR T R, RODERICK M L. Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate[J]. Journal of Hydrology, 2010, 386(1/4):186-197.
    [30] LIU Q, MCVICAR T R. Assessing climate change induced modification of Penman potential evaporation and runoff sensitivity in a large water-limited basin[J]. Journal of Hydrology, 2012, 464:352-362.
    [31] MANN H B. Nonparametric Tests Against Trend[J]. Econometrica, 1945, 13(3):245-259.
    [32]张山清,普宗朝.新疆参考作物蒸散量时空变化分析[J].农业工程学报,2011,27(5):73-79, 400.
    [33] RAYNER DP. Wind run changes:the dominant factor affecting pan evaporation trends in Australia[J]. Journal of Climate, 2007, 20(14):3 379-3 394.
    [34] TABARI H, AGHAJANLOO M-B. Temporal pattern of aridity index in Iran with considering precipitation and evapotranspiration trends[J]. International Journal of Climatology, 2013, 33(2):396-409.
    [35] PALUMBO D A, VITALE D, CAMPI P, et al. Time trend in reference evapotranspiration:analysis of a long series of agro meteorological measurements in southern Italy[J]. Irrigation and Drainage Systems, 2011, 25(4):395-411.
    [36] HUO Z, DAI X, FENG S, et al. Effect of climate change on reference evapotranspiration and aridity index in arid region of China[J]. Journal of Hydrology, 2013, 492:24-34.
    [37]杨林山,李常斌,王帅兵,等.洮河流域潜在蒸散发的气候敏感性分析[J].农业工程学报,2014,30(11):102-109.
    [38]刘小莽,郑红星,刘昌明,等.海河流域潜在蒸散发的气候敏感性分析[J].资源科学,2009,31(9):1 470-1 476.
    [39]梁丽乔,李丽娟,张丽,等.松嫩平原西部生长季参考作物蒸散发的敏感性分析[J].农业工程学报,2008, 24(5):1-5.
    [40]王立伟,董懿曼,牛凯杰,等.四川省潜在蒸散量敏感系数的时空变化[J].灌溉排水学报,2013,32(5):14-19.
    [41]王潇潇,潘学标,顾生浩,等.内蒙古地区参考作物蒸散变化特征及其气象影响因子[J].农业工程学报,2015,31(S1):142-152.
    [42] YE X, LI X, LIU J, et al. Variation of reference evapotranspiration and its contributing climatic factors in the Poyang lake catchment, China[J]. Hydrological Processes, 2014, 28(25):6 151-6 162.
    [43] JHAJHARIA D, DINPASHOH Y, KAHYA E, et al. Trends in temperature over Godavari river basin in southern peninsular India[J]. International Journal of Climatology, 2014, 34(5):1 369-1 384.
    [44]赵璐,梁川,崔宁博,等.川中丘陵区参考作物蒸发蒸腾量近60年变化成因研究[J].水利学报,2013,44(2):183-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700