蓄水坑灌肥液入渗下土壤水氮运移特性试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Water and Nitrogen Distribution in Soil Irrigated & Fertigated from a Water Storage Pit
  • 作者:李京玲 ; 陈攀 ; 孙西欢 ; 马娟娟
  • 英文作者:LI Jingling;CHEN Pan;SUN Xihuan;MA Juanjuan;College of Water Resource Science and Engineering, Taiyuan University of Technology;
  • 关键词:蓄水坑灌 ; 肥液入渗 ; 水氮运移 ; 氨挥发
  • 英文关键词:water storage pit irrigation;;fertilizer solution infiltration;;soil water and nitrogen transport;;ammonia volatilization
  • 中文刊名:GGPS
  • 英文刊名:Journal of Irrigation and Drainage
  • 机构:太原理工大学水利科学与工程学院;
  • 出版日期:2017-10-23 08:47
  • 出版单位:灌溉排水学报
  • 年:2017
  • 期:v.36
  • 基金:国家自然科学基金项目(51409184);; 山西省青年科技研究基金项目(201601D202070);; 高等学校博士学科点专项科研基金项目(20130402110008);; 太原理工大学校基金项目(2013Z071)
  • 语种:中文;
  • 页:GGPS201710011
  • 页数:6
  • CN:10
  • ISSN:41-1337/S
  • 分类号:58-63
摘要
为探讨蓄水坑灌肥液入渗下土壤水氮运移特性,通过室内试验对湿润体内土壤水分、NH+4-N和NO3--N的运移分布规律及氨挥发特性进行了系统研究。结果表明,蓄水坑灌肥液入渗下土壤水分主要分布在20~80 cm深层范围,表层土壤含水率较低,土壤水分的扩散分布主要集中在前9 d,再分布过程中,深层土壤含水率的增幅大于表层;氨挥发主要发生在蓄水坑边壁界面,占氨挥发总量的72.41%,且最大日均氨挥发量出现在第7天,达34.08 mg/(m~2·d);NH+4-N主要分布在地表以下30~60 cm范围,再分布10 d内NH+4-N质量分数随时间的延长逐渐增加,且第7天增加较快,15 d后减小;NO3--N主要分布在土壤湿润锋边缘,再分布15 d内,土壤NO3--N质量分数均随时间的延长逐渐增加。蓄水坑灌肥液入渗下,可提高地表以下30~60 cm土壤水分和NH+4-N质量分数,减小土壤表层氨挥发损失,增强90~100 cm深层土壤的硝化作用。
        Harvesting rainfall using pits for irrigation has become increasingly popular in northwestern China. In this paper we investigated the movement of water and nitrogen in soil under irrigation and fertilization from a water storage tank in laboratory at 30 ℃. The tank was a cylindrical wedge-shaped plexiglass with radius of 100 cm and height of 120, approximately twelfth of the storage pit used in the field. The results showed that the water was mainly within 20~60 cm depth of the soil and the soil surface was relatively dry. The infiltration of water from the pit into the soil took place in the first nine days, and water redistribution occurred mainly downwards. Ammonia volatilized mainly at the soil-pit interface, accounting for 72.41% of the total volatilization.The maximum daily ammonia volatilization was 34.08 mg/(m~2· d), peaking seven days after the infiltration. The ammonium was mainly found in 30~60 cm depth of the soil, increasing monotonically in the first nine days and then decreasing from15 days after the infiltration started. The nitrate was found in the wetting front, increasing from Day 1 to Day 15 after the infiltration started. In summary, irrigation and fertilization from the water storage pit increased water content and ammonium within the soil in the depth of 30 cm to 60 cm, decreased surface ammonia volatilization, and enhanced nitrification in soil in the depth of 90 cm to 100 cm.
引文
[1]孙西欢.蓄水坑灌法及其水土保持作用[J].水土保持学报,2002,16(3):130-131.
    [2]巨晓棠,谷保静.我国农田氮肥施用现状、问题及趋势[J].植物营养与肥料学报,2014,20(4):783-795.
    [3]李文娟,赵同科,张成军,等.北京市集约化农区地下水硝酸盐含量变化[J].农业环境科学学报,2013,32(7):1 445-1 450.
    [4]REBOLLEDO B,GIL A,FLOTATS X,et al.Assessment of groundwater vulnerability to nitrates from agricultural sources using a GIS-compatible logic multicriteria model[J].Journal of Environmental Management,2016,171:70-80.
    [5]费良军,傅渝亮,何振嘉,等.涌泉根灌肥液入渗水氮运移特性研究[J].农业机械学报,2015,46(6):121-129.
    [6]程东娟,赵新宇,费良军.膜孔灌灌施尿素条件下氮素转化和分布室内模拟试验[J].农业工程学报,2009,25(12):58-62.
    [7]WANG J,LU S,PEI L.Study on rules of dynamic variation of nitrogen in soil after reclaimed water drip irrigation[J].International Journal of Hydrogen Energy,2016,41(35):15 938-15 943.
    [8]李久生,李蓓,饶敏杰.地面灌溉技术参数对氮素运移分布影响的研究进展[J].农业工程学报,2004,20(6):51-55.
    [9]王忠江,蔡康妮,王丽丽,等.施灌沼肥对土壤氨挥发和氮素下渗规律的影响[J].农业机械学报,2014,45(5):139-144.
    [10]FILIPOVI?V,ROMI?D,ROMI?M,et al.Plastic mulch and nitrogen fertigation in growing vegetables modify soil temperature,water and nitrate dynamics:Experimental results and a modeling study[J].Agricultural Water Management,2016,176:100-110.
    [11]ZHANG W F,DOU Z X,HE P,et al.New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(21):8 375-8 380.
    [12]李京玲,马娟娟,孙西欢,等.蓄水坑灌单坑土壤氮素迁移转化的数值模拟[J].农业工程学报,2012,28(1):111-117.
    [13]王军,马娟娟,孙西欢,等.蓄水坑灌条件下不同土温对土壤水氮运移规律的影响[J].节水灌溉,2015(8):79-83.
    [14]李子春,周长旭.苹果需水量与灌溉管理[J].节水灌溉,1998(4):21-23.
    [15]王朝辉,刘学军,巨晓棠,等.田间土壤氨挥发的原位测定-通气法[J].植物营养与肥料学报,2002,8(2):205-209.
    [16]李婧羿.蓄水坑灌水肥灌施条件下土壤中氨挥发特性初步研究[D].太原:太原理工大学,2012.
    [17]董玉云,王宝成,费良军.膜孔肥液单向交汇入渗水、氮运移特性试验研究[J].中国农村水利水电,2015(6):91-94.
    [18]北京农业大学.农业化学[M].第二版.北京:中国农业出版社,2003.
    [19]李艳,刘海军,黄冠华.麦秸覆盖条件下土壤蒸发阻力及蒸发模拟[J].农业工程学报,2015,31(1):98-106.
    [20]郭安红,刘庚山,安顺清,等.有限供水对冬小麦根系生长发育的影响及其对底墒的利用特征[J].应用气象学报,2002,13(5):621-626.
    [21]马腾飞,危常州,王娟,等.不同灌溉方式下土壤中氨挥发损失及动态变化[J].石河子大学学报(自然科学版),2010,28(3):294-298.
    [22]彭世彰,杨士红,徐俊增.节水灌溉稻田氨挥发损失及影响因素[J].农业工程学报,2009,25(8):35-39.
    [23]程东娟,费良军,雷雁斌,等.膜孔灌灌施条件下硝态氮迁移分布规律研究[J].干旱地区农业研究,2008,26(1):237-240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700