流量对河水滴灌重力沉沙过滤池内流速分布的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of flow rate on flow velocity distribution in gravity sinking and filter tank for drip irrigation with river water
  • 作者:陶洪飞 ; 杨海华 ; 马英杰 ; 戚印鑫 ; 耿凡坤 ; 滕晓静 ; 刘亚丽
  • 英文作者:Tao Hongfei;Yang Haihua;Ma Yingjie;Qi Yinxin;Geng Fankun;Teng Xiaojing;Liu Yali;College of Water Conservancy and Civil Engineering,Xinjiang Agricultural University;Hydraulic Engineering Research Institute,Xinjiang Institute of Water Resources and Hydropower Research;
  • 关键词:灌溉 ; 流量 ; 流速 ; 数值模拟 ; 重力沉沙过滤池 ; 流场
  • 英文关键词:irrigation;;flow rate;;flow velocity;;numerical simulation;;gravity sinking and filter tank;;flow field
  • 中文刊名:NYGU
  • 英文刊名:Transactions of the Chinese Society of Agricultural Engineering
  • 机构:新疆农业大学水利与土木工程学院;新疆水利水电科学研究院水工河工研究所;
  • 出版日期:2017-01-08
  • 出版单位:农业工程学报
  • 年:2017
  • 期:v.33;No.303
  • 基金:国家科技支撑计划项目资助(2011Bad29B05);; 新疆农业大学博士后经费资助;; 新疆水利水电工程重点学科基金资助(xjslgczdxk20101202);; 复合应用型农林人才培养模式改革试点(农业水利工程)项目资助;; 新疆农业大学教研教改项目“农业水利工程专业卓越农林人才培养模式的改革”资助
  • 语种:中文;
  • 页:NYGU201701018
  • 页数:7
  • CN:01
  • ISSN:11-2047/S
  • 分类号:138-144
摘要
为研究流量对河水滴灌重力沉沙过滤池流速分布规律的影响,该文对5种不同流量下的水沙两相流流场进行了数值模拟。通过对不同流量下流速沿程分布规律、流速沿水深方向分布规律及水沙分离效率的对比与分析,可知河水滴灌重力沉沙过滤池的适宜流量范围为0.05~0.2 m3/s,进水流量越小,流速变化幅度也就越小,越有利于泥沙沉降,水沙分离效率不小于72.5%。不同流量下沉淀池中流速沿程变化规律可分成3个阶段:流速迅速增加阶段、流速缓慢减小阶段和流速迅速减小阶段。清水池中流速方向与沉淀池的相反,流速沿程减小。受进水口、出水口和固体边界,以及侧向溢流堰的影响,不同流量下河水滴灌重力沉沙过滤池中的流速沿水深方向分布规律有差别。当流量为0.05和0.1 m3/s时,远离进水口、出水口及侧向溢流堰的位置,流速沿水深方向的分布规律包含流速迅速增加、流速缓慢减小和流速恒定3个阶段,而清水池则只包括流速迅速增加和流速恒定阶段。研究可对大首部的应用提供参考。
        Filters have high energy consumption, high cost and high water consumption and other shortcomings. In order to solve this problem, gravity sinking and filter tank for drip irrigation with river water(GSFTDIRW) is proposed, which consists of sedimentation tank, clear water tank and sewage tank. The flow is the key factor influencing the separation efficiency of water-sediment and the flow field of wate-sediment. This study investigated the influence of flow rate on the GSFTDIRW. A physical experiment was carried out in the hydraulic experiment hall of Xinjiang Institute of Water Resources and Hydropower Research. The parameters such as water depth, flow velocity and sediment concentration in the GSFTDIRW under flow rate of 0.05 m3/s were measured. The model was set up according to the model size used in the physical experiment in the gambit drawing software. Meanwhile, the boundary conditions were set in the gambit drawing software. Then the parameters were set in the Fluent software. Simulated values were processed by tecplot software. By comparing the experimental values and simulated values, it was shown that the porous media model was reliable in simulating the filter mesh. It was feasible to simulate the internal flow field in GSFTDIRW using the standard k-ε two-equation model and the mixture model. Based on these, the flow field of water-sediment two-phase flow was simulated in the GSFTDIRW under 4 different flow rates. By comparing the distribution of flow velocity along the length, the distribution of water velocity along water depth and the separation efficiency of water-sediment, it was found that the appropriate flow rate was in a range of 0.05-0.2 m3/s when the sedimentation tank was 25 m in length, 1.5 m in width, 0.80 m in height, slope 1%, and lateral overflow weir 5 m. At the same time, the average flow velocity of sedimentation tank is 0.053-0.19 m/s. The smaller the influent flow was, the smaller the velocity variation was. This was more conducive to sedimentation. The sediment concentration was less than or equal to 1.65 kg/m3 in the clear water tank, and the total water-sediment separation efficiency was not less than 72.5%. Under the different flow rates, the flow velocity change along the sedimentation tank could be divided into 3 stages: increasing rapidly, decreasing slowly and decreasing rapidly. The velocity of flow in the clear water tank was opposite to that of the sedimentation tank, and the flow velocity decreased along the path. Under the influence of inlet, outlet and solid boundary, and lateral overflow weir, the distribution of flow velocity along water depth was different under different flow rate in the GSFTDIRW: the distribution of velocity along the depth of water at the locations far away from the water inlet, outlet and lateral weir contained 3 stages when the flow rate was 0.05 and 0.1 m3/s: rapid increase, slow decrease and constant. However, the distribution of velocity only included the rapid increase and constant stage in clear water tank.
引文
[1]钱智.在自治区农业高效节水建设现场会上的讲话[J].新疆水利,2012(3):1-5.Qian Zhi.Speech at the on-the-spot meeting of agricultural efficient water-saving construction in autonomous region[J].Xinjiang Water Resources,2012(3):1-5.(in Chinese with English abstract)
    [2]孙娟.河水滴灌重力沉沙过滤池的设计与应用推广[J].节水灌溉,2014(1):60-64.Sun Juan.Design of gravity desilting filter tank for drip irrigation with river water and its extension[J].Water Saving Irrigation,2014(1):60-64.(in Chinese with English abstract)
    [3]陶洪飞,邱秀云,李巧,等.不同鳃片间距下的分离鳃内部流场三维数值模拟[J].农业机械学报,2014,45(6):183-189.Tao Hongfei,Qiu Xiuyun,Li Qiao,et al.3D Numerical simulation of internal flow field in gill-piece separation device under different gill-piece spacing[J].Transactions of the Chinese Society for Agricultural Machinery,2014,45(6):183-189.(in Chinese with English abstract)
    [4]陶洪飞,邱秀云,赵丽娜,等.水沙分离鳃内部流场的数值模拟[J].农业工程学报,2013,29(17):38-46.Tao Hongfei,Qiu Xiuyun,Zhao Lina,et al.Numerical simulation of internal flow field in gill-piece separation device[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2013,29(17):38-46.(in Chinese with English abstract)
    [5]张志新.新疆微灌发展现状、问题和对策[J].节水灌溉,2000(3):8-10.Zhang Zhixin.Current situation,problems and countermeasures of the micro-irrigation in Xinjiang[J].Water Saving Irrigation,2000(3):8-10.(in Chinese with English abstract)
    [6]杨晓军,刘飞,吴玉秀,等.新疆农田节水灌溉系统首部过滤设备选型探讨[J].中国农村水利水电.2014(5):76-80.Yang Xiaojun,Liu Fei,Wu Yuxiu,et al.A discuss on the first part filtration equipment selection in Xinjiang agricultural water-saving irrigation system[J].Water Saving Irrigation,2014(5):76-80.(in Chinese with English abstract)
    [7]Wu Wenyong,Chen Wei,Liu Honglu,et al.A new model for head loss assessment of screen filters developed with dimensional analysis in drip irrigation systems[J]Irrig and Drain,2014(63):523-531.
    [8]宗全利,刘飞,刘焕芳,等.大田滴灌自清洗网式过滤器水头损失试验[J].农业工程学报,2012,28(16):86-92.Zong Quanli,Liu Fei,Liu Huanfang,et al.Experiments on water head loss of self-cleaning screen filter for drip irrigation in field[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2012,28(16):86-92.(in Chinese with English abstract)
    [9]Thokal R T,Raghavendra A G,Suresh N M,et al.Effect of sand particle size and concentration on performance of screen filter in trickle irrigation[J].Annals of Arid Zone,2004,43(1):65-71.
    [10]阿力甫江·阿不里米提,虎胆·吐马尔白,马合木江·艾合买提,等.直冲洗鱼雷网式过滤器内流场的数值模拟[J].节水灌溉,2014(10):6-10.Alipujiang·Abulimiti,Hudan·Tumaerbai,Mahemujiang·Aihemaiti,et al.Numerical simulation of flow field in Torpedo filter[J].Water Saving Irrigation,2014(10):6-10.(in Chinese with English abstract)
    [11]Avner Adin,Giora Alon.Mechanisms and process parameters of filter screens[J].Irrigation and Drainage Engineering,1996,4(293):112-115.
    [12]申祥民,阿不都沙拉木,崔春亮,等.自主研发的大流量叠片过滤器的性能分析[J].中国农村水利水电,2011(4):85-87.Shen Xiangmin,Abudu Shalamu,Cui Chunliang,et al.Performance analysis of an independently-developed large flow rate disc filter[J].China Rural Water and Hydropower,2011(4):85-87.(in Chinese with English abstract)
    [13]陶洪飞,邱秀云,王苗.基于数值模拟的分离鳃水沙分离效率及机理分析[J].节水灌溉,2015(2):66-71.Tao Hongfei,Qiu Xiuyun,Wang Miao.Analysis of Watersediment separation efficiency and mechanism of gill-piece separation device based on numerical simulation[J].Water Saving Irrigation,2015(2):66-71.(in Chinese with English abstract)
    [14]何建村.河水滴灌重力沉沙过滤池的设计、施工及运行管理[J].节水灌溉,2014(9):87-90.He Jiancun.Design,construction and operation management of gravity desilting and filter basin[J].Water Saving Irrigation,2014(9):87-90.(in Chinese with English abstract)
    [15]宗全利,刘焕芳,汤骅,等.溢流槽对沉沙池溢流堰长度的影响分析研究[J].泥沙研究,2011(3):67-72.Zong Quanli,Liu Huanfang,Tang Hua,et al.Study of effect of spillway trough on spillway crest length of settling basin[J].Journal of Sediment Research,2011(3):67-72.(in Chinese with English abstract)
    [16]Wang Xiaoling,Zhou Shasha,Li Tao,et al.Threedimensional simulation of the water flow field and the suspended-solids concentration in a circular sedimentation tank[J].Canadian Journal of Civil Engineering,2011,38(7):825-836.
    [17]Hadi G A,Kris J A.CFD methodology for the design of rectangular sedimentation tanks in potable water treatment plants[J].Journal of Water Supply,2009,58(3):212-220.
    [18]华根福,刘焕芳,汤骅,等.沉沙池中水流流态的数值模拟[J].石河子大学学报:自然科学版,2009(4):582-486.Hua Genfu,Liu Huanfang,Tang Hua,et al.Numerical simulation of water flow pattern in sand basin[J].Journal of Shihezi University:Natural Science,2009(4):582-486.(in Chinese with English abstract)
    [19]刘百仓,陈大宏,刘映祥,等.平流式沉淀池中部进水流场测量与数值模拟[J].供水技术,2010,4(5):1-5.Liu Baicang,Chen Dahong,Liu Yingxiang,et al.Measurement and modeling of rectangular primary sedimentation tanks with incoming flow at the middle of inlet[J].Water Technology,2010,4(5):1-5.(in Chinese with English abstract)
    [20]田艳,张根广,秦子鹏.厢式沉沙池进口优化试验及流场三维数值模拟[J].中国农村水利水电,2013(8):89-94.Tian Yan,Zhang Genguang,Qin Zipeng.Experimental optimized investigation and three-dimensional numerical simulation of van sand basin[J].China Rural Water and Hydropower,2013(8):89-94.(in Chinese with English abstract)
    [21]朱炜,马鲁铭,盛铭军.CFD模型在污水沉淀池数值模拟中的应用[J].水处理技术,2006,32(4):10-13.Zhu Wei,Ma Luming,Sheng Mingjun.Application of CFD model in numerical value simulation sewage sedimentation tank[J].Technology of Water Treatment,2006,32(4):10-13.(in Chinese with English abstract)
    [22]魏文礼,李盼盼,洪云飞,等.挡板长度对辐流式沉淀池流场与污泥浓度场影响的数值模拟[J].西北农林科技大学学报:自然科学版,2016,44(7):228-234.Wei Wenli,Li Panpan,Hong Yunfei,et al.Influence of baffle length on flow and sludge concentration fields in a radial sedimentation tank[J].Journal of Northwest A&F University:Natural Science,2016,44(7):228-234.(in Chinese with English abstract)
    [23]魏文礼,张泽伟,白朝伟,等.辐流式沉淀池进口挡板影响的液固两相流数值模拟[J].应用力学学报,2016,33(1):93-98.Wei Wenli,Zhang Zewei,Bai Chaowei,et al.Numerical simulation of a feed flow baffle on the flow of a radial sedimentation tank by using a liquid-solid two-phase model[J].Chinese Journal of Applied Mechanics,2016,33(1):93-98.(in Chinese with English abstract)
    [24]陈斌,汪源,张华,等.周进周出矩形沉淀池配水孔分布的数值模拟[J].给水排水,2016,42(4):54-57.
    [25]魏文礼,白朝伟,刘玉玲.辐流式沉淀池挡板尺寸对温差异重流水力特性影响的三维模拟[J].西安理工大学学报,2016,32(1):12-17.Wei Wenli,Bai Zhaowei,Liu Yuling.3D simulation for the influence of a feed baffle on the density current behaviors caused by temperature in a radial sedimentation tank[J].Journal of Xi’an University of Technology,2016,32(1):12-17.(in Chinese with English abstract)
    [26]陶洪飞,邱秀云,赵丽娜,等.基于正交设计的分离鳃结构优化数值模拟研究[J].水力发电学报,2013,32(5):204-212.Tao Hongfei,Qiu Xiuyun,Zhao Lina,et al.Numerical simulation of structure optimization for separation device based on orthogonal design[J].Journal of Hydroelectric Engineering,2013,32(5):204-212.(in Chinese with English abstract)
    [27]于立章,孙立成,孙中宁.多孔介质通道中单相流动压降预测模型[J].核动力工程,2010(5):63-66,88.Yu Lizhang,Sun Licheng,Sun Zhongning.Prediction model of single phase flow pressure drop in porous medium channel[J].Nuclear Power Engineering,2010(5):63-66,88.(in Chinese with English abstract)
    [28]陶洪飞,邱秀云,杨海华.不同浑水含沙量下的分离鳃内部流场三维数值模拟[J].水力发电学报,2015,34(2):64-71.Tao Hongfei,Qiu Xiuyun,Yang Haihua.Three-dimensional numerical simulation of internal flow in gill-sheet separation device under muddy water of different sediment concentrations[J].Journal of Hydroelectric Engineering,2015,34(2):64-71.(in Chinese with English abstract)
    [29]李治勤,陈刚,杨晓池.浑水引起迷宫灌水器物理堵塞因素实验研究[J].西安理工大学学报,2006,22(4):395-398.Li Zhiqin,Chen Gang,Yang Xiaochi.Experimental study of physical clogging factor of labyrinth emitter caused by muddy water[J].Journal of Xi an University of Technology,2006,22(4):395-398.(in Chinese with English abstract)
    [30]水利部农田灌溉研究所.灌溉与排水工程设计规范:GB50288-99[S].北京:中国计划出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700