可用于无筋建造的超高延性水泥基复合材料力学性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on mechanical property of ultra-high ductility cementitious composites in construction without steel reinforcement
  • 作者:俞可权 ; 余江滔 ; 李凌志 ; 董方园 ; 王义超 ; 詹凯利
  • 英文作者:Yu Kequan;Yu Jiangtao;Li Lingzhi;Dong Fangyuan;Wang Yichao;Zhan Kaili;College of Civil Engineering,Tongji University;Key Laboratory of Performance Evolution and Control for Engineering Structures of Ministry of Education;
  • 关键词:无筋建造 ; 应变强化 ; 延性 ; 水泥基复合材料 ; 抗震性能
  • 英文关键词:construction without steel reinforcement;;strain strengthening;;ductility;;cementitious composites;;seismic performance
  • 中文刊名:JCJG
  • 英文刊名:Building Structure
  • 机构:同济大学土木工程学院;工程结构性能演化与控制教育部重点实验室;
  • 出版日期:2019-01-22
  • 出版单位:建筑结构
  • 年:2019
  • 期:v.49;No.494
  • 基金:国家自然科学基金(51778461)
  • 语种:中文;
  • 页:JCJG201902006
  • 页数:8
  • CN:02
  • ISSN:11-2833/TU
  • 分类号:34-40+47
摘要
为了验证超高延性水泥基复合材料(Ultra-high ductility cementitious composites,UHDCC)用于无筋建造的可行性,进行了材料、构件和结构三个层面的力学试验。试验结果显示,UHDCC的抗拉强度介于5~20MPa之间。在峰值应力处,UHDCC的平均拉伸应变达8%,最大拉伸应变可达12%以上,具有超强的拉伸强化特性; UHDCC的抗压强度介于30~120MPa之间,在某些地震强度范围内表现出罕见的抗压应变强化的特性;四点弯曲试验显示,UHDCC无筋梁的承载力相当于配筋率0. 5%~1. 5%的普通钢筋混凝土梁,达到极限承载力时,其变形均超过1/50的挠度,具备良好的抗弯和抗剪承载力及变形能力。偏心受压试验显示,UHDCC无筋柱的承载力接近配筋率为0. 8%的高强混凝土柱,并比高强混凝土柱具有更好的变形能力。通过振动台试验,对比研究了7度(0. 105g)模拟多遇地震到9度(1. 178g)模拟罕遇地震下钢筋混凝土框架(柱配筋率2. 3%)和UHDCC组合框架的抗震性能。UHDCC组合框架显示出自增强阻尼性能和良好的耗能能力,具备与钢筋混凝土框架相近的抗震能力。
        To evaluate the feasibility of ultra-high ductility cementitious composites( UHDCC) developed for construction without steel reinforcement,a series of tests were carried out on the mechanical properties of UHDCC at material,component and structure levels. The tests for material properties indicate that the tensile strength of UHDCC is between5 MPa and 20 MPa,and the average tensile strain capacity of UHDCCs is 8% with the maximal tensile strain up to 12% at peak stress. UHDCC have super tensile strengthening characteristics. The compressive strength of UHDCC ranges from30 MPa to 120 MPa with a rare strain strengthening behavior occurred under the range of certain seismic strength. The results of four-point bending tests demonstrate the outstanding load bearing capacity and deformability of UHDCC beams. More specifically,the load bearing capacity of plain UHDCC beam is equal to that of conventional reinforced concrete( RC)beam with the steel reinforcement ratio of 0. 5% ~ 1. 5%; while the deflection-span ratio of UHDCC beams all exceed 1/50 at peak load. The eccentric compression test on UHDCC columns and high-strength RC column shows that the loading capacity of UHDCC column is close to that of high-strength RC column with a steel ratio of 0. 8%,and the former has better deformation ability. Additionally,shaking tale tests were conducted on seismic performance of the RC frame( reinforcement ratios of columns were about 2. 3%) and the UHDCC composite frame under seismic excitations with the peak ground acceleration ranging from 0. 105 g to 1. 178 g,and the latter exhibited better energy-dissipating capacity with self-reinforced damping capacity. UHDCC composite frame has seismic capacity similar to that of reinforced concrete frame.
引文
[1]清华大学、西南交通大学、北京交通大学土木工程结构专家组.汶川地震建筑震害分析[J].建筑结构学报,2008,29(4):1-9.
    [2]王亚勇.汶川地震建筑震害启示[C]//2008中国科协防灾减灾论坛.郑州,2008.
    [3]金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望[J].浙江大学学报(工学版),2002,36(4):371-381.
    [4] WORRELL E,PRICE L,MARTIN N,et al. Carbon dioxide emissions from the global cement industry[J].Ann Rev Energy Environ,2001,26(1):303-329.
    [5] WILLE K,EL-TAWIL S,NAAMAN A E. Properties of strain hardening ultra high performance fiber reinforced concrete(UHP-FRC)under direct tensile loading[J].Cement&Concrete Composites,2014,48(2):53-66.
    [6] NAAMANN A E,HOMRICH J R. Tensile stress-strain properties of SIFCON[J]. Materials Journal,1989,86(3):244-251.
    [7]徐世烺,李贺东.超高韧性水泥基复合材料研究进展及其工程应用[J].土木工程学报,2008,41(6):45-60.
    [8] LI VICTOR C.高延性纤维增强水泥基复合材料的研究进展及应用[J].硅酸盐学报,2007,35(4):531-536.
    [9]钢筋混凝土用钢第2部分:热轧带肋钢筋:GB 1499. 2—2007[S].北京:中国建筑工业出版社,2007.
    [10]陈凤山.海洋环境下钢筋混凝土结构CFRP加固研究[D].大连:大连理工大学,2007.
    [11]张玲玲,张陵,马建勋.海洋环境下碳纤维增强复合材料片材的耐久性[J].建筑材料学报,2008,11(6):732-735.
    [12]徐卫国.数字建构[J].建筑学报,2009(1):61-68.
    [13] DING L,WEI R,CHE H. Development of a BIM-based automated construction system[J]. Procedia Engineering,2014,85:123-131.
    [14]范诗建,杜骁,陈兵.磷酸盐水泥在3D打印技术中的应用研究[J].新型建筑材料,2015,42(1):1-4.
    [15]马义和. 3D打印建筑技术与案例[M].上海:上海科学技术出版社,2016.
    [16] LI V C,LEUNG C K Y. Steady state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics,1992,118(1):2246-2264.
    [17] YU KEQUAN,WANG YICHAO,YU JIANGTAO,et al.A strain-hardening cementitious composites with the tensile capacity up to 8%[J]. Construction and Building Materials,2017,137(1):410-419.
    [18]建筑抗震设计规范:GB 50011—2010[S].北京:中国建筑工业出版社,2010.
    [19]陆洲导,林晨旭,余江滔,等.可用于无钢筋建造的超强超韧水泥基复合材料[J].同济大学学报(自然科学版),2017,45(6):880-884.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700