Effects of mechanical activation on the digestion of ilmenite in dilute H_2SO_4
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of mechanical activation on the digestion of ilmenite in dilute H_2SO_4
  • 作者:Xiaomei ; Wang ; Chun ; Li ; Hairong ; Yue ; Shaojun ; Yuan ; Changjun ; Liu ; Siyang ; Tang ; Bin ; Liang
  • 英文作者:Xiaomei Wang;Chun Li;Hairong Yue;Shaojun Yuan;Changjun Liu;Siyang Tang;Bin Liang;Low-Carbon Technology and Chemical Reaction Engineering Laboratory;
  • 英文关键词:Ilmenite;;Mechanical activation;;Sulfuric-acid leaching;;Wet milling;;Kinetics
  • 中文刊名:ZHGC
  • 英文刊名:中国化学工程学报(英文版)
  • 机构:Low-Carbon Technology and Chemical Reaction Engineering Laboratory;
  • 出版日期:2019-03-15
  • 出版单位:Chinese Journal of Chemical Engineering
  • 年:2019
  • 期:v.27
  • 基金:Supported by the National Natural Science Foundation of China(21236004)
  • 语种:英文;
  • 页:ZHGC201903011
  • 页数:12
  • CN:03
  • ISSN:11-3270/TQ
  • 分类号:102-113
摘要
The commercial sulfate process for pigment production uses concentrated sulfuric acid(N 85 wt% H_2SO_4) as feeding material and discharges 8–10 tons of spend dilute acid(20 wt% H_2SO_4) per ton of product. Re-using spend acid to leach ilmenite can cut the waste emission and save fresh feeding acid. However, the leaching reaction with dilute acid is very slow and the digestion efficiency is fairly low. This paper describes a wet-milling process to enhance the dilute-acid leaching of ilmenite that makes it possible to produce TiO_2 pigment in a more environmentally benign routine. The leaching kinetic study of unmilled ilmenite, dry milled 60 min ilmenite and wet milled 60 min ilmenite was conducted by revision of the shrinking core model(SCM), incorporation of particle size distribution(PSD) into SCM. The results revealed that mechano-chemical activation method significantly increased the leaching efficiency of titanium from 36% to 76% by reducing the particle size and increasing the reaction contact area. On the other hand, the milling process increased the lattice deformation and amorphization of crystalline, which lowered the activation energies in the leaching process. Compared with dry milling operation, wet milling is more effective, the particle size distribution of wet-milled ilmenite was much narrower, smaller, and more uniform. Wet milling of ilmenite makes the leaching reaction with dilute acid(60 wt% H_2 SO_4) practicable and the re-use of spend acid becomes possible and economical.
        The commercial sulfate process for pigment production uses concentrated sulfuric acid(N 85 wt% H_2SO_4) as feeding material and discharges 8–10 tons of spend dilute acid(20 wt% H_2SO_4) per ton of product. Re-using spend acid to leach ilmenite can cut the waste emission and save fresh feeding acid. However, the leaching reaction with dilute acid is very slow and the digestion efficiency is fairly low. This paper describes a wet-milling process to enhance the dilute-acid leaching of ilmenite that makes it possible to produce TiO_2 pigment in a more environmentally benign routine. The leaching kinetic study of unmilled ilmenite, dry milled 60 min ilmenite and wet milled 60 min ilmenite was conducted by revision of the shrinking core model(SCM), incorporation of particle size distribution(PSD) into SCM. The results revealed that mechano-chemical activation method significantly increased the leaching efficiency of titanium from 36% to 76% by reducing the particle size and increasing the reaction contact area. On the other hand, the milling process increased the lattice deformation and amorphization of crystalline, which lowered the activation energies in the leaching process. Compared with dry milling operation, wet milling is more effective, the particle size distribution of wet-milled ilmenite was much narrower, smaller, and more uniform. Wet milling of ilmenite makes the leaching reaction with dilute acid(60 wt% H_2 SO_4) practicable and the re-use of spend acid becomes possible and economical.
引文
[1]C.O.Robichaud,A.E.Uyar,M.R.Darby,L.G.Zucker,M.R.Wiesner,Estimates of upper bounds and trends in nano-Ti O2production as a basis for exposure assessment,Environ.Sci.Technol.43(2009)4227-4233.
    [2]K.Tyner,A.Wokovich,D.Godar,W.Doub,N.Sadrieh,The state of nano-sized titanium dioxide(Ti O2)may affect sunscreen performance,Int.J.Cosmet.Sci.33(2011)234-244.
    [3]Y.Yang,K.Doudrick,X.Bi,K.Hristovski,P.Herckes,P.Westerhoff,R.Kaegi,Characterization of food-grade titanium dioxide:The presence of nanosized particles,Environ.Sci.Technol.48(2014)6391-6400.
    [4]A.Weir,P.Westerhoff,L.Fabricius,K.Hristovski,N.von Goetz,Titanium dioxide nanoparticles in food and personal care products,Environ.Sci.Technol.46(2012)2242-2250.
    [5]A.Zielińska,E.Kowalska,J.W.Sobczak,I.??cka,M.Gazda,B.Ohtani,J.Hupka,A.Zaleska,Silver-doped Ti O2prepared by microemulsion method:Surface properties,bio-and photoactivity,Sep.Purif.Technol.72(2010)309-318.
    [6]S.Yamada,K.Miyazawa,H.Naka,Y.Yoshida,Titanium Dioxide Concentrate and Its Manufacturing Process,1974.
    [7]J.B.Rosenbaum,Titanium technology trends,JOM 34(1982)76-80.
    [8]B.Liang,C.Li,C.Zhang,Y.Zhang,Leaching kinetics of Panzhihua ilmenite in sulfuric acid,Hydrometallurgy 76(2005)173-179.
    [9]C.Li,B.Liang,L.Guo,Z.Wu,Effect of mechanical activation on the dissolution of Panzhihua ilmenite,Miner.Eng.19(2006)1430-1438.
    [10]J.A.Rahm,D.G.Cole,Process for Manufacturing Titanium Compounds Using a Reducing Agent,(US)1981.
    [11]Z.She,S.Xu,J.Fan,Decomposing titanium concentrate with acid in liquid phase by fluidization,Multipurpose Utilization of Mineral Resources,1998.
    [12]J.L.Jing,Q.Z.Zhang,L.Y.Qiu,B.Liang,An investigation on the liquid phase digestion of ilmenite in sulfate process Ti O2pigment production,Chem.React.Eng.Technol.19(2003)337-343.
    [13]P.Balá?,Mechanical activation in hydrometallurgy,Int.J.Miner.Process.72(2003)341-354.
    [14]P.Balaz,A.Alacova,M.Achimovicova,J.Ficeriova,E.Godocikova,Mechanochemistry in hydrometallurgy of sulfide minerals,Hydrometallurgy 77(2005)9-17.
    [15]A.Z.Juhász,L.Opoczky,Mechanical Activation of Minerals by Grinding Pulverizing and Morphology of Particles,Halsted Press,New York,NY(United States),1990.
    [16]P.Balá?,Mechanochemistry in Nanoscience and Minerals Engineering,Springer,Berlin Heidelberg,2008.
    [17]P.Balá?,M.Achimovi?ová,Mechano-chemical leaching in hydrometallurgy of complex sulphides,Hydrometallurgy 84(2006)60-68.
    [18]N.H.Fletcher,N.J.Welham,Enhanced dissolution following extended milling,AICh EJ.46(2000)666-669.
    [19]C.Sasikumar,D.S.Rao,S.Srikanth,B.Ravikumar,N.K.Mukhopadhyay,S.P.Mehrotra,Effect of mechanical activation on the kinetics of sulfuric acid leaching of beach sand ilmenite from Orissa,India,Hydrometallurgy 75(2004)189-204.
    [20]D.Tromans,J.A.Meech,Enhanced dissolution of minerals:stored energy,amorphism and mechanical activation,Miner.Eng.14(2001)1359-1377.
    [21]N.J.Welham,D.J.Llewellyn,Mechanical enhancement of the dissolution of ilmenite,Miner.Eng.11(1998)827-841.
    [22]L.Wei,H.Hu,Q.Chen,J.Tan,Effects of mechanical activation on the HCl leaching behavior of plagioclase,ilmenite and their mixtures,Hydrometallurgy 99(2009)39-44.
    [23]L.Zhang,H.Hu,L.Wei,Q.Chen,J.Tan,Effects of mechanical activation on the HCLleaching behavior of titanaugite,ilmenite,and their mixtures,Metall.Mater.Trans.B 41(2010)1158-1165.
    [24]L.Zhang,H.Hu,Z.Liao,Q.Chen,J.Tan,Hydrochloric acid leaching behavior of different treated Panxi ilmenite concentrations,Hydrometallurgy 107(2011)40-47.
    [25]Y.Chen,T.Hwang,M.Marsh,J.S.Williams,Study on mechanism of mechanical activation,Mater.Sci.Eng.A 226-228(1997)95-98.
    [26]Y.Chen,J.S.Williams,S.J.Campbell,G.M.Wang,Increased dissolution of ilmenite induced by high-energy ball milling,Mater.Sci.Eng.A 271(1999)485-490.
    [27]C.Sasikumar,D.S.Rao,S.Srikanth,N.K.Mukhopadhyay,S.P.Mehrotra,Dissolution studies of mechanically activated Manavalakurichi ilmenite with HCl and H2SO4,Hydrometallurgy 88(2007)154-169.
    [28]C.Li,B.Liang,L.H.Guo,Dissolution of mechanically activated Panzhihua ilmenites in dilute solutions of sulphuric acid,Hydrometallurgy 89(2007)1-10.
    [29]M.Achimovi?ová,S.Hassan-Pour,E.Gock,V.Vogt,P.Balá?,B.Friedrich,Aluminothermic production of titanium alloys(part 1):Synthesis of Ti O2as input material,Assoc.Metall.Eng.Serbia(AMES)20(2014)141-154.
    [30]N.G.Kostova,M.Achimovi?ová,A.Eliyas,N.Velinov,V.Blaskov,I.Stambolova,E.Gock,Ti O2obtained from mechanically activated ilmenite and its photocatalytic properties,Bulg.Chem.Commun.47(2015)317-322.
    [31]C.Suryanarayana,Mechanical alloying and milling,Prog.Mater.Sci.46(2004)1-184.
    [32]S.Fadda,A.Cincotti,A.Concas,M.Pisu,G.Cao,Modelling breakage and reagglomeration during fine dry grinding in ball milling devices,Powder Technol.194(2009)207-216.
    [33]N.J.Welham,The effect of extended milling on minerals,CIM Bull.90(1997)64-68.
    [34]A.Johansen,T.Schaefer,Effects of interactions between powder particle size and binder viscosity on agglomerate growth mechanisms in a high shear mixer,Eur.J.Pharm.Sci.12(2001)297-309.
    [35]L.Lutterotti,P.Scardi,P.Maistrelli,LSI-A computer program for simultaneous refinement of material structure and microstructure,J.Appl.Crystallogr.25(1992)459-462.
    [36]N.J.Welham,Enhanced dissolution of tantalite/columbite following milling,Int.J.Miner.Process.61(2001)145-154.
    [37]A.M.Kalinkin,E.V.Kalinkina,Modelling of the sulfuric acid leaching of mechanically activated titanite,Hydrometallurgy 108(2011)189-194.
    [38]G.K.Williamson,W.H.Hall,X-ray line broadening from filed aluminium and wolfram,Acta Metall.1(1953)22-31.
    [39]H.Li,Effect of Experimental Facility Style on the Activation of Mineral,1997.
    [40]G.Chen,J.H.Peng,J.Chen,Optimizing conditions for wet grinding of synthetic rutile using response surface methodology,Miner.Metall.Process.28(2011)44-48.
    [41]G.Chen,J.Peng,J.Chen,S.Zhang,Response surface methodology applied to optimize the experimental conditions for preparing synthetic rutile by microwave irradiation:High temperature materials and processes,High Temp.Mater.Processes 28(2009)165-174.
    [42]Y.Chen,J.Williams,B.Ninham,Mechanochemical reactions of ilmenite with different additives,Colloids Surf.A Physicochem.Eng.Asp.129(1997)61-66.
    [43]Y.Chen,Different oxidation reactions of ilmenite induced by high energy ball milling,J.Alloys Compd.266(1998)150-154.
    [44]C.Li,B.Liang,Study on the mechanochemical oxidation of ilmenite,J.Alloys Compd.459(2008)354-361.
    [45]O.Levenspiel,Chemical reaction engineering,Ind.Eng.Chem.Res.38(1999)1055-1076.
    [46]D.Murhammer,D.Davis,O.Levenspiel,Shringking core model/reaction control for a wide size distribution of solids,Chem.Eng.J.32(1986)87-91.
    [47]P.K.Gbor,C.Q.Jia,Critical evaluation of coupling particle size distribution with the shrinking core model,Chem.Eng.Sci.59(2004)1979-1987.
    [48]T.C.Veloso,J.J.M.Peixoto,M.S.Pereira,V.A.Leao,Kinetics of chalcopyrite leaching in either ferric sulphate or cupric sulphate media in the presence of Na Cl,Int.J.Miner.Process.148(2016)147-154.
    [49]P.González-Tello,F.Camacho,J.M.Vicaria,P.A.González,A modified NukiyamaTanasawa distribution function and a Rosin-Rammler model for the particle-sizedistribution analysis,Powder Technol.186(2008)278-281.
    [50]A.Monteiro,A.Afolabi,E.Bilgili,Continuous production of drug nanoparticle suspensions via wet stirred media milling:A fresh look at the Rehbinder effect,Drug Dev.Ind.Pharm.39(2013)266.
    [51]D.H.Kaelble,A relationship between the fracture mechanics and surface energetics failure criteria,J.Appl.Polym.Sci.18(1974)1869-1889.
    [52]S.L.S.Stipp,Toward a conceptual model of the calcite surface:hydration,hydrolysis,and surface potential,Geochim.Cosmochim.Acta 63(2000)3121-3131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700