新型地下水流速流向测量技术及其在岩溶区调查中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Flow Direction and Its Application in the Investigation of Karst Area
  • 作者:郭绪磊 ; 朱静静 ; 陈乾龙 ; 刘伟 ; 罗明明 ; 周宏
  • 英文作者:Guo Xulei;Zhu Jingjing;Chen Qianlong;Liu Wei;Luo Mingming;Zhou Hong;Institute of Geological Survey,China University of Geosciences(Wuhan);Shanghai Xinqiu Environmental Engineering Consulting Co.LTD;Karst Dynamics Laboratory of MNR;School of Environmental Studies,China University of Geosciences(Wuhan);
  • 关键词:岩溶区 ; 地下水流速和流向 ; 渗透系数 ; 水流系统识别
  • 英文关键词:karst area;;groundwater flow velocity and direction;;permeability coefficient;;the identification of flow systems
  • 中文刊名:DZKQ
  • 英文刊名:Geological Science and Technology Information
  • 机构:中国地质大学(武汉)地质调查研究院;上海新球环境工程咨询有限公司;自然资源部岩溶动力学重点实验室;中国地质大学(武汉)环境学院;
  • 出版日期:2019-01-15
  • 出版单位:地质科技情报
  • 年:2019
  • 期:v.38;No.184
  • 基金:国家重点研发计划课题(2017YFC0406105);; 中国地质调查局项目(DD20160304);; 国家自然科学基金项目(41807199);; 自然资源部岩溶动力学重点实验室开放课题(KDL201702;KDL201703);; 中央高校基本科研业务费专项资金资助项目(CUG170670);; 湖北省自然科学基金项目(2018CFB170)
  • 语种:中文;
  • 页:DZKQ201901027
  • 页数:7
  • CN:01
  • ISSN:42-1240/P
  • 分类号:249-255
摘要
我国南方岩溶区往往水文地质条件复杂,含水层的渗透性具有较强的非均一性。为探究岩溶含水层矢量渗透系数的分布规律,识别多级次岩溶水流系统的特征,利用新型地下水流速流向测量技术,在鄂西香溪河流域的典型水文地质钻孔进行了试验研究。结合地面调查、抽水试验和压水试验等方法,对流速流向测试与分析结果进行了水文地质解释及探讨。结果表明:所选典型钻孔岩溶含水层的垂向渗透系数不均一性较强,新型流速流向测量方法计算得出的渗透系数与抽水试验的计算结果相差5%;与压水试验相比,在钻孔2个不同深度的含水段,2种方法计算的渗透系数分别相差44%和2%;不同深度的地下水流向测量结果表明,钻孔在垂向上揭示了2个不同层次的岩溶水流系统。新型地下水流速流向测量与分析方法能够较准确地识别岩溶水的优势径流方向和径流层位,对于岩溶含水层渗透性非均一性的定量刻画具有良好的应用前景。
        The karst hydrogeological conditions are very complex in South China,and the permeability coefficient of karst aquifer also has high heterogeneity.In order to investigate the distribution of vector permeability coefficient of karst aquifers and identify the characteristics of multiple karst flow system,a new method of measuring groundwater flow velocity and direction was tested in a typical hydrogeological borehole in the Xiangxi River basin,western Hubei Province.In addition,the hydrogeological interpretation and discussion of test results were obtained in combination with field investigations,pumping tests and packer permeability tests.The results show that the vertical permeability coefficient is highly heterogene-ous in the borehole,and the permeability coefficient calculated by this new method is 5% different from that of the pumping test.Compared with the packer permeability test,the differences of permeability coefficients calculated by these two methods in two water-bearing zones of different depths are 44% and 2%,respectively.The measurements of groundwater flow direction at different depths have proved that there are two different karst flow systems in the vertical scale.This new method can recognize the dominant flow direction and locations in the karst aquifer,which has broadened the application prospect in quantitative characterization of karst permeability heterogeneity.
引文
[1]张人权,梁杏靳,靳孟贵,等.水文地质学基础[M].第6版.北京:地质出版社,2011:1-199.
    [2]张金才,刘天泉,张玉卓.裂隙岩体渗透特征的研究[J].煤炭学报,1997,22(5):35-39.
    [3]李星宇,南天,王新娟,等.基于微水试验的北京大兴隐伏岩溶裂隙渗透系数求取方法[J].南水北调与水利科技,2014,12(4):156-160.
    [4] Audouin O,Bodin J.Cross-borehole slug test analysis in a fractured limestone aquifer[J].Journal of Hydrology,2008,348(3):510-523.
    [5] Cheng J T,Everett M E.Finite element modeling of slug tests in an aquifer with stratigraphical and structural heterogeneities[J].Geofluids,2010,9(1):49-62.
    [6]谷现平,聂新恕,周江,等.利用高密度电法仪探测地下水流速流向[J].中国煤炭地质,2010,22(增刊1):83-85.
    [7]刘静,刘盛东,曹煜,等.地下水渗流与地电场参数响应的定量研究[J].岩石力学与工程学报,2013,32(5):986-993.
    [8] Nassir S S A,Loke M H,Lee C Y,et al.Salt-water intrusion mapping by geoelectrical imaging surveys[J].Geophysical Prospecting,2010,48(4):647-661.
    [9] Revil A,Cary L,Fan Q,et al.Self-potential signals associated with preferential ground water flow pathways in a buried paleo-channel[J].Geophysical Research Letters,2005,32(7):303-341.
    [10]Sheffer M R.Response of the self-potential method to changing seepage conditions in embankment dams[D].Vancouver Canada:The University of Columbia British,2002.
    [11]孙建平,周建伟,刘存富,等.河北平原地下水4 He年龄初探:以满城—任丘剖面为例[J].地质科技情报,2006,25(6):77-81.
    [12]韩庆之,陈辉,万凯军,等.武汉长江底钻孔同位素单井法地下水流速、流向测试[J].水文地质工程地质,2003,30(2):74-76.
    [13]叶合欣,陈建生.放射性同位素示踪稀释法测定涌水含水层渗透系数[J].核技术,2007,30(9):739-744.
    [14]Yao-Ru L U.Preliminary investigation of some main features of karst development in South China[J].Acta Geological Sinica,1965,45(1):108-129.
    [15]刘丽红,李娴,鲁程鹏.岩溶含水系统水动力特征研究进展[J].水电能源科学,2012,30(7):21-24.
    [16]武亚遵,万军伟,林云,等.基于岩溶演化模型的隧道突水危险性评价[J].地质科技情报,2015,34(5):166-171.
    [17]Bougeard S,Hélard J F,Siaud I.Modeling the influence of epikarst evolution on karst aquifer genesis:A time-variant recharge boundary condition for joint karst-epikarst development[J].Water Resources Research,2005,41(9):109-127.
    [18]Vesper D J,White W B.Storm pulse chemographs of saturation index and carbon dioxide pressure:Implications for shifting recharge sources during storm events in the karst aquifer at Fort Campbell,Kentucky/Tennessee,USA[J].Hydrogeology Journal,2004,12(2):135-143.
    [19]Luo M,Chen Z,Criss R E,et al.Dynamics and anthropogenic impacts of multiple karst flow systems in a mountainous area of South China[J].Hydrogeology Journal,2016,24(8):1-10.
    [20]Jian L I,Huang G H,Wen Z,et al.A laboratory experiment on radial non-Darcian flow in confined aquifer under steadystate conditions[J].Journal of Hydraulic Engineering,2012,43(1):76-83.
    [21]Wen Z,Huang G,Zhan H.Non-Darcian flow to a well in a leaky aquifer using the Forchheimer equation[J].Hydrogeology Journal,2011,19(3):563-572.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700