基于天文效应的流域性特丰水年预报方法及应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Method and application of extra-rich water forecast in catchment based on Astronomical Effect
  • 作者:李文龙 ; 李鸿雁 ; 马绍忠 ; 郭希海
  • 英文作者:LI Wenlong;LI Hongyan;MA Shaozhong;GUO Xihai;Fengman Hydropower Plant of State Grid Xin Yuan Company Limited, Songhuajiang Hydraopower Co.,Ltd.;College of New Energy and Environment, Jilin University;Tiandy Technologies Co., Ltd.;State Grid Northeast China Electric Power Dispatching & Controlling Center;
  • 关键词:太阳黑子相对数 ; 月球赤纬角 ; 天文效应 ; 特丰水预报 ; 水文气象 ; 全球气候变化 ; 地球水文循环
  • 英文关键词:the sunspot relative number;;Lunar declination;;Astronomical affection;;extra-rich water forecast;;hydrometeor;;global climate change;;geohydrological cycle
  • 中文刊名:SJWJ
  • 英文刊名:Water Resources and Hydropower Engineering
  • 机构:松花江水力发电有限公司吉林丰满发电厂;吉林大学新能源与环境学院;天地伟业技术有限公司;国家电网东北电力调控分中心;
  • 出版日期:2019-04-17 10:50
  • 出版单位:水利水电技术
  • 年:2019
  • 期:v.50;No.547
  • 基金:国网新源控股有限公司科学技术项目(XQJH1885000121);; 国家自然科学基金中韩国际合作项目(51711540299)
  • 语种:中文;
  • 页:SJWJ201905005
  • 页数:9
  • CN:05
  • ISSN:11-1757/TV
  • 分类号:39-47
摘要
针对造成水库特丰水年的天文条件问题,为了提高水库特丰水年预报结果的可信度,以国家电网公司调度区域内的15座大型水库特丰水年为研究对象,选用太阳黑子相对数、月球赤纬角2个天文因子,采用点聚图法,绘制水库年入库流量与太阳黑子关系分布图、水库年入库流量与月球赤纬角关系分布图、水库年入库流量天文效应区图,分析水库特丰水年在特定天文条件范围内的聚类关系,使15座水库特丰水年平均出现概率提高到正常出现概率的5.1倍。结果表明:水库的特丰水与太阳黑子、月球赤纬角密切相关,在特定的太阳黑子、月球赤纬角范围内高频率发生;基于流域同步性分析,从形成特丰水年的天文条件、天文周期、可公度结构等方面,预报2020年发生1964年型全国多流域水库特丰水、流域大洪水的概率大。
        The present study aims to explore the problem of astronomical conditions which cause extra-rich water year of reservoir, takes extra-rich water year of 15 large reservoirs within the dispatch area in the State Grid Company as the research object. Two astronomical factors, sunspot relative number and lunar declination, are selected to analyze astronomical effect of extra-rich water in catchment. It is found that the extra-rich water of reservoir is closely related to the sunspot relative number and lunar declination, which occurs frequently in the specific range of sunspot relative number and lunar declination. Based on the synchronism analysis of catchment, it is predicted that the probability of the large flood in catchment and extra-rich water in Multi-basin of China is high in 2020 like 1964 from the astronomical conditions, astronomical cycle, and commensurable structure aspect.
引文
[1] 霍金.大设计[M].湖南:湖南科学技术出版社,2011.
    [2] 姚建明.地球演变故事[M].北京:清华大学出版社,2016.
    [3] HERMAN J R,GOLDBERG R A.太阳.天气.气候[M].盛承禹,蒋窈窕,徐振滔,译.北京:气象出版社,1984.
    [4] 竺可桢.竺可桢文集[M].北京:科学出版社,1979.
    [5] 黄忠恕.水文气候预测基础理论与应用技术[M].北京:中国水利水电出版社,2005.
    [6] RIND D.The Sun's role in climate variations[J].Science,2002,296(5568):673- 677.
    [7] YUAN L W,LIU Z C,CHEN Y.Paleoclimatic change derived natural gamma-logging curve in Qaidam Basin and its relation to the solar insolation[J].Journal of Glaciology and Geocryology,2004,3:010.
    [8] SHINDELL D T,SCHMIDT G A,MANN M E,et al.Solar forcing of regional climate change during the Maunder Minimum[J].Science,2001,294(5549):2149- 2152.
    [9] WENG H.The influence of the 11 yr solar cycle on the interannual-centennial climate variability[J].Journal of Atmospheric and Solar-Terrestrial Physics,2005,67(8- 9):793- 805.
    [10] KELLY P M,WIGLEY T M L.Solar cycle length,greenhouse forcing and global climate[J].Nature,1992,360(6402):328- 330.
    [11] KRIVOVA N A,SOLANKI S K.Solar variability and global warming:a statistical comparison since 1850[J].Advances in Space Research,2004,34(2):361- 364.
    [12] TIAN J,NELSON D M,HU F S.Possible linkages of late-Holocene drought in the North American midcontinent to Pacific Decadal Oscillation and solar activity[J].Geophysical Research Letters,2006,33(23):L23702.
    [13] 汤懋苍,柳艳香,郭维栋.天时、气候与中国历史(Ⅰ):太阳黑子周长与中国气候[J].高原气象,2001,20(4):368- 373.
    [14] 柳艳香,高晓清.SCL与中国东部气候年代际变化[J].冰川冻土,2002,23(1):46- 50.
    [15] WANG Zhongrui,FENG Song,TANG Maocang.A relationship between solar activity and frequency of natural disasters in China[J].Advances in Atmospheric Sciences,2003,20(6):934- 939.
    [16] 郭增建.天灾预测学简论—广义地球物理学在天灾预测中的应用[M].武汉:武汉大学出版社,2015.
    [17] LI Hongyan,WANG Yuxin,LI Xiubin.The mechanism and forecasting methods for severe droughts and floods in a river Basin[J].Chinese Geographical Science,2011,21(5):531- 542.
    [18] LI Hongyan,TIAN Lin,WU Ya'nan,et al.Improvement of mid-to long-term runoff forecasting based on physical causes:application in Nenjiang Basin,China[J].Hydrological Sciences Journal,2013,58(7):1414- 1422.
    [19] YUAN L W,LIU Z C,CHEN Y.Paleoclimatic change derived natural gamma-logging curve in Qaidam Basin and its relation to the solar insolation[J].Journal of Glaciology and Geocryology,2004,3:010.
    [20] WENG H.The influence of the 11 yr solar cycle on the interannual-centennial climate variability[J].Journal of Atmospheric and Solar-Terrestrial Physics,2005,67(8/9):793- 805.
    [21] KRIVOVA N A,SOLANKI S K.Solar variability and global warming:a statistical comparison since 1850[J].Advances in Space Research,2004,34(2):361- 364.
    [22] 张德二,梁有叶.1730年夏季黄淮地区暴雨极端事件研究[J].气候变化研究进展,2016,12(5):407- 412.
    [23] 中国国家标准化管理委员会.水文情报预报规范[M].北京:中国标准出版社,2008.
    [24] 中国农业百科全书总编辑委员会农业气象卷编辑委员会.中国农业百科全书·农业气象卷[M].北京:农业出版社,1996.
    [25] 翁笃鸣.多点聚图天气预报方法准确性的概率估计[J].气象科技,1975(6):5- 10.
    [26] 张丹丹.气象八要素点聚图长期洪水预报方法的改进[J].黑龙江水利科技,2009,37(1):20.
    [27] 夏军.水文灾变事件的一种可公度信息预测方法初探[J].武汉水利电力学院学报,1991,24(3):288- 295.
    [28] 王富强,许士国.长江流域洪水的可公度性及其预测研究[J].长江科学院院报,2008,25(6):23- 27.
    [29] 黄金凤,夏军,杜鸿,等.基于可公度和灰关联模式识别法的鲁台子、蚌埠站中长期洪水预报[J].武汉大学学报(工学版),2015,48(5):622- 626.
    [30] 李文龙,李鸿雁.长江流域连续大洪水年机理分析及预报[J].水利水电技术,2018,49(5):1- 8.
    [31] 李文龙,李秀斌.基于可公度预报方法的洪灾预报技术实用化研究[M]//高建国.灾害预测方法集成.北京:气象出版社,2010:162- 167.
    [32] 李文龙,李秀斌,王胜民.关于2013年辽河、第二松花江特大洪水的预测[J].水电厂自动化,2012,33(4):48- 53.
    [33] 金朝辉,李文龙,李秀斌.东北区域大洪水预测研究与思考[J].东北水利水电,2015,33(12):38- 41.
    [34] 李文龙.丰满流域2010年特大洪水、特丰水年的天文背景研究[C]//中国大坝协会.高坝建设与运行管理的技术进展—中国大坝协会2014学术年会论文集.北京:中国大坝协会,2014:5.
    [35] 长江水利委员会水文局.1954年长江的洪水[M].武汉:长江出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700