Stress-induced potential barriers and charge distributions in a piezoelectric semiconductor nano?ber
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Stress-induced potential barriers and charge distributions in a piezoelectric semiconductor nano?ber
  • 作者:Shuaiqi ; FAN ; Yuantai ; HU ; Jiashi ; YANG
  • 英文作者:Shuaiqi FAN;Yuantai HU;Jiashi YANG;Department of Mechanics, Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Huazhong University of Science and Technology;Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln;
  • 英文关键词:ZnO nano?ber;;mechanical tuning;;multi-?eld coupling theory;;potential barrier;;potential well
  • 中文刊名:YYSL
  • 英文刊名:应用数学和力学(英文版)
  • 机构:Department of Mechanics, Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Huazhong University of Science and Technology;Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln;
  • 出版日期:2019-05-03
  • 出版单位:Applied Mathematics and Mechanics(English Edition)
  • 年:2019
  • 期:v.40
  • 基金:Project supported by the National Natural Science Foundation of China(Nos.11672113 and51435006);; the Key Laboratory Project of Hubei Province of China(No.2016CFA073)
  • 语种:英文;
  • 页:YYSL201905001
  • 页数:10
  • CN:05
  • ISSN:31-1650/O1
  • 分类号:3-12
摘要
The performance of a piecewise-stressed ZnO piezoelectric semiconductor nano?ber is studied with the multi-?eld coupling theory. The ?elds produced by equal and opposite forces as well as sinusoidally distributed forces are examined. Speci?c distributions of potential barriers, wells, and regions with effective polarization charges are found. The results are fundamental for the mechanical tuning on piezoelectric semiconductor devices and piezotronics.
        The performance of a piecewise-stressed ZnO piezoelectric semiconductor nano?ber is studied with the multi-?eld coupling theory. The ?elds produced by equal and opposite forces as well as sinusoidally distributed forces are examined. Speci?c distributions of potential barriers, wells, and regions with effective polarization charges are found. The results are fundamental for the mechanical tuning on piezoelectric semiconductor devices and piezotronics.
引文
[1]HUTSON,A.R.and WHITE,D.L.Elastic wave propagation in piezoelectric semiconductors.Journal of Applied Physics,33,40-47(1962)
    [2]WHITE,D.L.Amplification of ultrasonic waves in piezoelectric semiconductors.Journal of Applied Physics,33,2547-2554(1962)
    [3]COLLINS,J.H.,LAKIN,K.M.,QUATE,C.F.,and SHAW,H.J.Amplification of acoustic surface waves with adjacent semiconductor and piezoelectric crystals.Applied Physics Letters,13,314-316(1968)
    [4]WANG,Z.L.Nanobelts,nanowires,and nanodiskettes of semiconducting oxides-from materials to nanodevices.Advanced Materials,15,432-436(2010)
    [5]WEN,X.N.,WU,W.Z.,DING,Y.,and WANG,Z.L.Piezotronic effect in flexible thin-film based devices.Advanced Materials,25,3371-3379(2013)
    [6]LEE,K.Y.,KUMAR,B.,SEO,J.S.,KIM,K.H.,SOHN,J.I.,CHA,S.N.,CHOI,D.,WANG,Z.L.,and KIM,S.W.P-type polymer-hybridized high-performance piezoelectric nanogenerators.Nano Letters,12,1959-1964(2012)
    [7]GAO,Y.F.and WANG,Z.L.Electrostatic potential in a bent piezoelectric nanowire:the fundamental theory of nanogenerator and nanopiezotronics.Nano Letters,7,2499-2505(2007)
    [8]LU,M.P.,SONG,J.H.,LU,M.Y.,CHEN,M.T.,GAO,Y.F.,CHEN,L.J.,and WANG,Z.L.Piezoelectric nanogenerator using p-type ZnO nanowire arrays.Nano Letters,9,1223-1227(2009)
    [9]YANG,Q.,LIU,Y.,PAN,C.F.,CHEN,J.,WEN,X.N.,and WANG,Z.L.Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect.Nano Letters,13,607-613(2013)
    [10]WANG,X.D.,ZHOU,J.,SONG,J.H.,LIU,J.,XU,N.S.,and WANG,Z.L.Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire.Nano Letters,6,2768-2772(2006)
    [11]LAO,C.S.,PARK,M.C.,KUANG,Q.,DENG,Y.L.,SOOD,A.K.,POLLA,D.L.,and WANG,Z.L.Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization.Journal of the American Chemical Society,129,12096-12097(2007)
    [12]LI,P.,JIN,F.,and MA,J.X.One-dimensional dynamic equations of a piezoelectric semiconductor beam with a rectangular cross section and their application in static and dynamic characteristic analysis.Applied Mathematics and Mechanics(English Edition),39(5),685-702(2018)https://doi.org/10.1007/s10483-018-2325-6
    [13]LEW-YAN-VOON,L.C.and WILLATZEN,M.Electromechanical phenomena in semiconductor nanostructures.Journal of Applied Physics,109,031101(2011)
    [14]PAN,E.Elastic and piezoelectric fields around a quantum dot:fully coupledor semicoupled model?Journal of Applied Physics,91,3785-3796(2002)
    [15]PAN,E.Elastic and piezoelectric fields in substrates Ga As(001)and Ga As(111)due to a buried quantum dot.Journal of Applied Physics,91,6379-6387(2002)
    [16]JOGAI,B.,ALBRECHT,J.D.,and PAN,E.Effect of electromechanical coupling on the strain in AlGaN/GaN heterojunction field effect transistors.Journal of Applied Physics,94,3984-3985(2003)
    [17]JOGAI,B.,ALBRECHT,J.D.,and PAN,E.Electromechanical coupling in free-standing AlGa N/GaN planar structures.Journal of Applied Physics,94,6566-6573(2003)
    [18]LIU,Y.,ZHANG,Y.,YANG,Q.,NIU,S.M.,and WANG,Z.L.Fundamental theories of piezotronics and piezo-phototronics.Nano Energy,14,257-275(2015)
    [19]WANG,Z.L.and WU,W.Z.Piezotronics and piezo-phototronics:fundamentals and applications.National Science Review,1,62-90(2014)
    [20]GAO,Y.F.and WANG,Z.L.Electrostatic potential in a bent piezoelectric nanowire:the fundamental theory of nanogenerator and nanopiezotronics.Nano Letters,7,2499-2505(2007)
    [21]GAO,Y.F.and WANG,Z.L.Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire.Nano Letters,9,1103-1110(2009)
    [22]FAN,S.Q.,LIANG,Y.X.,XIE,J.M.,and HU,Y.T.Exact solutions to the electromechanical quantities inside a statically-bent circular ZnO nanowire by taking into account both the piezoelectric property and the semiconducting performance:part I,linearized analysis.Nano Energy,40,82-87(2017)
    [23]LIANG,Y.X.,FAN,S.Q.,CHEN,X.D.,and HU,Y.T.Nonlinear effect of carrier drift on the performance of an n-type ZnO nanowire nanogenerator by coupling piezoelectric effect and semiconduction.Beilstein Journal of Nanotechnology,9,1917-1925(2018)
    [24]DAI,X.Y.,ZHU,F.,QIAN,Z.H.,and YANG,J.S.Electric potential and carrier distribution in a piezoelectric semiconductor nanowire in time-harmonic bending vibration.Nano Energy,43,22-28(2017)
    [25]ZHANG,C.L.,WANG,X.Y.,CHEN,W.Q.,and YANG,J.S.An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force.Smart Material Structures,26,025030(2016)
    [26]ZHANG,C.L.,LUO,Y.X.,CHENG,R.R.,and WANG,X.Y.Electromechanical fields in piezoelectric semiconductor nanofibers under an axial force.MRS Advances,2,3421-3426(2017)
    [27]CHENG,R.R.,ZHANG,C.L.,CHEN,W.Q.,and YANG,J.S.Piezotronic effects in the extension of a composite fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors.Journal of Applied Physics,124,064506(2018)
    [28]WANG,G.L.,LIU,J.X.,LIU,X.L.,FENG,W.J.,and YANG,J.S.Extensional vibration characteristics and screening of polarization charges in a ZnO piezoelectric semiconductor nanofiber.Journal of Applied Physics,124,094502(2018)
    [29]YANG,W.L.,HU,Y.T.,and YANG,J.S.Transient extensional vibration in a ZnO piezoelectric semiconductor nanofiber under a suddenly applied end force.Materials Research Express,6,025902(2018)
    [30]FAN,S.Q.,YANG,W.L.,and HU,Y.T.Adjustment and control on the fundamental characteristics of a piezoelectric PN junction by mechanical-loading.Nano Energy,52,416-421(2018)
    [31]JIN,L.S.,YAN,X.H.,WANG,X.F.,HU,W.J.,ZHANG,Y.,and LI,L.J.Dynamical model for piezotronic and piezo-phototronic devices under low and high frequency external compressive stresses.Journal of Applied Physics,123,025709(2018)
    [32]AULD,B.A.Acoustic Fields and Waves in Solids,John Wiley and Sons,New York(1973)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700